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Chapter 1

Introduction

The cylindrical shell 1s a common structural component in nuclear, hydro-
electric, and fossil fuel power plants, in offshore oil platforms, and in many other
applications which require pipes and pressure vessels. It is frequently necessary to
join one cylindrical shell to another, or to have openings and areas of reinforcement
on the surface of the shell, which usually produce localized areas of high stress con-
centration (see Fig. 1.1). Due to the importance of such structures, there is a great
need for a reliable, efficient analysis procedure in order to reduce the probabilities
of failure. Despite that, reliable studies of the elastic stresses at the junction of two
cylinders have been rare, even for the idealized problem of two cylinders with no fil-
let or reinforcement. Those methods that are available do not completely cover the
wide range of geometrical parameters or the variety of loading configurations that
exist in actual structures. Analytical solutions have generally been difficult to ob-
tain because of the complicated geometry. Unlike perpendicular cylinder-to-sphere

junctions, this problem does not possess rotational symmetry.

The Pressure Vessel Research Committee of the Welding Research Counail
and other organizations with interest in pressure vessels have embarked on an ex-
tensive experimental and analytical investigation program of the cylindrical shell
intersection problem. Most of the theoretical work 1s related to idealized cylinder-

to-cylinder junctions (see Fig. 1.2). In this case, the vessel (intersected cylinder)
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Figure 1.1

A cluster of pipes intersecting a larger pipe from different directions.
This 1s a very common structural component in pressure vessels and
offshore structures.

Figure 1.2

_Idealized cylinder-to-cylinder junction frequently used in analytical
mvestigations.



1. Introduction 3

has a diameter D, and the nozzle (intersecting cylinder) has a diameter d. Unfortu-
nately, the majority of the analytical solutions for this problem have been confined
to cases where the nozzle is considered small relative to the vessel (d/D < 0.5). As
a result, there is a demand for an analytical approach that is useful for handling
cases with d/D > 0.5 . The development of such a solution is the objective of this

study.

§1.1 Literature Review

The early stages of research on the cylindrical shell intersection problem have
been confined to cases in which the ratio of the diameter of the intersecting cylinder
to the diameter of the intersected cylinder (d/D) is small. The reason is that for
small values of d/D, it is possible to make certain approximations for the geometry
of the intersection curve. In addition, because in the cases of small d/D the opening
is located in a zone of the cylinder which is almost flat, referred to as the “shallow

region”, the use of shallow shell theory is justified.

1.1.1 Small Openings and Rigid Inclusions

One of the first to investigate this problemm was Lufe (1947). He studied the
stress field near a circular opening in a cylinder subject to uniform axial tension or
internal pressure. Using perturbation techniques, Lufe expressed solutions in the
form of power series in terms of a dimensionless hole size parameter that relates the
size of the opening to the radius and thickness of the cylinder. The solution is valid
for very small values of the hole size parameter. Following the same procedure, Van
Dyke (1965} solved the same problem using an infinite series of Hankel functions
of the first kind as a general solution. His approach was designed to be valid for
slightly larger hole sizes. Boundary conditions at the opening were satisfied by using
a collocation method, which led to a truncation of the series. In addition to the

previous two loadings, his work also included the solution for torsion of the cylinder.
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Solution for a rigid inclusion in a circular cylinder is important because it serves
as a limiting case for a very thick nozzle intersecting a cylinder. Van Dyke (1967)
solved the problem using an approach similar to his earlier work for the opening.
Influence coefficients were used to satisfy the boundary conditions at the inclusion
boundary. Bonde and Rao (1978) studied the problem of a pressurized cylinder
with a rigid inclusion. Their solution was also in the form of Hankel functions.
Unlike Van Dyke’s solution which was written in terms of the displacements of the
midsurface, Bonde and Rao used strain and curvature change measures to satisfy
boundary conditions. Membrane and bending stresses were plotted versus the hole
size parameter. The results exhibit an asymptotic behavior which is in contradiction

to that obtained by Van Dyke.

Using an approximate estimate of the stresses in the vessel due to external
loads applied to the nozzle, Wichman, et al. (1965) developed design curves for
the Welding Research Council Bulletin 107. Their work is based on the analytical
solution of Bijlaard (1955). He replaced the external loads by pressure distributions
applied to rectangular patches on the cylinder face. A double Fourier series expan-
sion was used to compute stresses at specific points in the vessel due to the applied
loads. Although this approach is rather crude, and sometimes produces inaccurate
results, it was one of the most commonly used design procedures because of its

simplicity.

Wong, et al. (1985) used the same double Fourier series solution developed
by Bijlaard to expand the range of problems that can be handied. Their work is
supposed to be valid for large nozzles, interaction between neighboring nozzles, and
rectangular nozzles. Instead of applying the surface pressure to a single rectangular
area, the surface inside the intersection curve is divided into several rectangular
and triangular elements. As the number of elements was increased, the solution

converged to Bijlaard’s solution.
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1.1.2 Small-Nozzle Problems

Several investigators studied the problem of a small nozzle intersecting the
main cylinder. Reidelbach (1961) attempted to solve the problem by providing a
Fourier series expansion for the solution of the approximate Donnell thin shell equa-
tions. The harmonics of the Fourier series solution for the opening were assumed
to be uncoupled. This assumption is essentially equivalent to the treatment of the
intersected cylinder as a flat plate. Van Campen (1969) developed a triangular ring
element to solve for stresses at nozzle-to-flat plate intersections. His solution was
intended to serve as an approximation for cylinder-to-cylinder intersections with a

diameter ratio d/D < 1/4.

Lekkerkerker (1965) used the assumption that the edge of the nozzle is flat to
solve for stresses in problems with small diameter ratios. Instead of using Donnell’s
equations, the more accurate Flugge’s equations for a flat-ended cylinder were used
to evaluate influence coefficients for the nozzle edge. Similarly, influence coefficients
for the opening in the vessel were developed using a combination of exponential and

Bessel function solutions of the shallow skell equations.

During the same period, Eringen and Suhubi (1965) worked out a mathemat-
ical formulation for the problem of a cylinder-to-cylinder junction (d/D < 0.3)
subjected to internal pressure. In their subsequent work (1969), numerical results

for several models with a wide range of geometrical parameters were published.

Riley (1965) performed an experiment on a very thin model with diameter ratio
of 0.5 subjected to internal pressure, radial load, in-plane and out-of-plane moments
applied to the nozzle. Distribution of elastic stresses around the junction for all the
loading cases were provided. Pan and Beckett (1970) used the same geometry to test
their numerical approach to the solution using a collocation technique and the Least
Squares method. Their solution was not stable numerically and was very sensitive

‘to the position of the collocation points on the intersection curve. Reasonable

agreement with the experimental results was obtained only by restricting all the
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collocation points to exist in the shallow region of the intersection curve.

Steele and Steele (1983) developed a versatile computer code (FASTZ2) for the
analysis of spherical and cylindrical intersections. The limitation on the solution is
that the diameter ratio is less than one half. Eleven different loading configurations
applied to the nozzle or the vessel can be handled, with the capability to include
the effect of pad reinforcement on either shell. By approximating the opening in the
vessel to be a circle, and the edge of the nozzle to be flat, Bessel function solutions
of the shallow shell equations were computed Solution for singularities in shells
obtained by Flugge and Conrad (1958), and Sanders and Simmonds (1970) were
utilized to represent the effect of the external loads. Asymptotic corrections to the

total solution were added to satisfy the boundary conditions at the supports.

In addition, Steele and Steele (1983) used FAST2 to develop an extensive set of
design tables that include the peak stresses in the vessel due to four different load-
ings. The tables include results for several values of the nozzle radius-to-thickness
ratio, and the ratio of vessel thickness to nozzle thickness. These tables were the
basis for the development of WRC Bulletin No. 297 by Mershon, et al. (1984).
A detailed comparative study between FAST2 and experimental results was later
performed by Steele and Steele (1985). They reported excellent agreement with
strain gauge measurements obtained by a research group in Qak Ridge National

Laboratory.

1.1.3 Large Openings in Cylinders

In the case of large openings in cylindrical vessels, simple analytical solutions
are difficult to obtain. One of the reasons is that as the diameter ratio d/D exceeds
0.5, the approximations mentioned previously for the small openings are no longer
valid. The opening in the vessel can not be accurately approximated by a circle. It is
also inaccurate to assume that the lower edge of the nozzle is flat. The actual space

curve describing the intersection between the two cylinders must be considered.
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Another reason is the fact that for large d/D ratios, the opening in the vessel will
extend outside the shallow region of the cylinder. As a result, the use of shallow
shell theory for the solution of either cylinder is not valid. Another set of equations
for the circular cylinder that are more accurate than Donnell’s equations must be

used for both cylinders.

Due to the complexity of the problem, the literature dealing with large open-
ings in cylindrical shells is scarce. Most of the successful investigations have been
experimental. Gwaltney, et al. (1976) performed several experiments on a care-
fully manufactured steel mode] of two intersecting cylinders with equal diameters.
Using strain gauge measurements, stresses in both shells due to thirteen different
loadings were given. An analytical study of the same model using a thin shell finite
element program was also done. Relatively good over-all agreement between the

experimental and analytical results was observed.

Using photoelastic measurements, Taylor and Lind (1966) computed stress con-
centration factors due to internal pressure in several models, some of which had large
nozzles. Most of the models could be classified as thick shells. The results given

were limited to the two principal axes of the geometry.

In general, the few investigations involving analytical solutions of the problem
did not include numerical results. Bijlaard, et al. (1967) attempted to solve the
equations for the special case of two equal diameter cylinders. In their solution,
Fligge’s equations were used for both cylinders. A set of complicated boundary
conditions in terms of forces and displacements at the boundary of each cylinder

were derived. No numerical results obtained through this approach were published.

£1.2 Development of FAST3

It is clear from the previous sections that there is a lack of an efficient method
with a good theoretical basis for the computation of stresses at the junction of two

circular cylinders. The program FAST3, the development of which is the primary
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objective of this research effort, is designed to fulfill this need with strong emphasis
on problems in which the nozzle is considered large relative to the size of the vessel

(d/D >0.5).

The FAST3 program was developed with an emphasis on understanding the
behavior of shells and incorporating this knowledge in the solution procedure. This
minimizes the amount of decision made by the user, which leads to short user
preparation times. This is in contrast to the relatively large amount of time that is

generally needed for establishing an efficient, useful mesh for use in finite element

programs. The objective is to reduce the user preparation time to a few minutes,

The solution is obtained by dividing the state of stress in the structure into
two parts. The first part is the particular solution, which is the nominal state of
stress due to the applied loads in the two shells separated from each other. The
other is the complementary solution, which is the solution to the residual problem
obtained by subtracting the nominal solution from the total solution. This part of
the solution is used to satisfy the continuity conditions at the junction between the
two cylinders. Both solutions will be expanded as functions of the circumferential
angle of the nozzle, in the form of a finite Fourier series. The Fast Fourier Transform
(FFT) method is used to efficiently evaluate the Fourier coeflicients of the solution.
The use of symmetry to investigate only one quarter of the problem is an additional

technique for reducing the numerical computations.

The next few chapters give a detailed desecription of the methods used to com-
pute both solutions. In Chapter 2, the main assumptions and the geometrical
description of the problem are given. Limitations on the theory in terms of ma-
terial behavior, dimensions and boundary conditions are stated. The chapter also
explains the notation used to describe the different loading configurations that will
be used in the analysis. The second part of this chapter deals with the definition of
the intersection curve between the two cylinders. A convenient coordinate system
utilizing the circumferential angle of the nozzle projected on the developed surface

of the vessel is used. Two sets of orthonormal vectors are also introduced to define
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the direction of the stress resultants acting on the boundary of both shells. The
chapter ends with a discussion of the symmetry and anti-symmetry requirements of

the solution for the different loading cases.

The solution of the equations for a thin circular cylinder is discussed in Chap-
ter 3. A brief historical review of the different types of solutions for a semi-infinite
cylinder proposed by several authors is given. Qut of these thin shell theories,
Sanders’ equations were selected due to their simplicity, consistency, and accuracy.
By utilizing stress-strain relations, strain-displacement relations, and the static-
geometric analogy. 1t is possible to derive simple formulas for the stresses and strains
in the cylinder. These formulas are useful for the computation of solutions anywhere
in the cylinder due to the application of an arbitrary distribution of edge forces or
displacements. A brief discussion of the compatibility and equilibrium requirements

of the solutions is given at the end of the chapter.

Chapter 4 is a description of the cut method, which 1s used for the computation
of the particular solution and the contribution of the low harmonics to the comple-
mentary solution for the vessel. At midspan, a circumferential cut in the surface of
the vessel is used to prescribe certain discontinuities in forces and displacements.
These discontinuities have to satisfy the equilibrinm requirements in the case of
forces, and the compatibility requirements in the case of deformations. By using
the edge solution for a cylinder, described in Chapter 3, one can evaluate the needed

forces and displacements at mesh points around the intersection curve.

The first part of Chapter 5 is a description of the evaluation of the particular
solution for the vessel which represents the effect of the application of the external
loads. For loading cases of internal pressure and axial force on the vessel, the
membrane solution for the circular cylinder is used. For other loading cases that
involve external loads applied to the nozzle, the cut methed is used to compute
the particular solution. This is achieved by applying some cut distributions of
forces that produce the same resultants as the applied loads. The chapter also

gives a description of the procedure used for the evaluation of the low harmonics
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of the complementary solution. Because of the complexity of the shell behavior
near the junction, the evaluation of “stiffness” coeflicients for the boundary is very
complicated, but the cut method is expected to be a useful technique for generating
such coefficients. However, its use is limited to the low harmonics of the solution,

which necessitates the use of another method for handling the high harmonics.

An asymptotic solution of the shallow shell equations is used to complement cut
method, and is detailed in Chapter 6. This solution i1s useful for handling rapidly
varying functions around the opening, for which the cut solution is useless. A
general exponential solution that decays rapidly away from the boundary is used
to derive the eikonal equation of the problem. Roots of the eikonal equation are
computed for each harmonic and are used to compute forces and displacements at

the boundary. This provides a set of stiffness coefficients for the higher harmonics.

The particular and complementary solutions for the nozzle are discussed in
Chapter 7. Simple membrane solutions for cylinders, evaluated at the boundary of
the nozzle, are used to compute the effect of the external loads. Another version
of the cut method is used to compute the stiffness coefficients for the edge of the
nozzle. Periodic distributions of forces and displacements are prescribed to a flat-
ended cylinder. These distributions are used to compute the solution at the actual
boundary of the nozzle. Finally, by adding the nozzle solution to the vessel solution
and with the use of the continuity conditions between the two shells, one can reduce
the problem to a single set of equations. The solution of these equations yields the

stresses at the junction of the cylinders due to the applied load.

A general discussion of FAST3, its characteristics and features is given in Chap-
ter 8. The limitations on the validity of FAST3 results are stated in terms of the
size of the nozzle. This is followed by a discussion of the special solutions for the two
limiting cases of a rigid inclusion or an opening in a cylinder. The effect of the ves-
sel length on the results is also investigated for the different loading configurations.
After that, a comparative study between FAST3 and other approaches is given.

Results obtained using analytical, experimental, and finite element approaches are
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compared to numerical results from FAST3 to verify its validity. Then, FAST3 is
used to investigate the stresses in a large number of cylinder-to-cylinder models
(d/D > 0.5) subjected to five different loading configurations. The results are tab-

ulated in Appendix A and will serve as a supplement for the existing design tables

available in WRC-297 for small diameter ratios (d/D < 0.5).

Finally, Chapter 9 includes some brief conclusions and recommendations for

future work.
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Chapter 2

Problem Description

The structure under consideration consists of two intersecting thin circular
cylindrical shells. For the vessel R, T, E, and v denote the mean radius, thickness,
Young’s modulus of elasticity, and Poisson’s ratio. The same quantities for the

nozzle are represented by rg,t, E,, and v.

The first part of this chapter is a brief description of the assumptions used in
the analysis. It also includes the himitations on the validity of the analysis. The
following part is a detailed study of the geometry of the intersection curve between
the two intersecting cylinders. The circumferential angle of the nozzle is replaced by
a new angle that will be used, in addition to the radius, as the main local coordinate
for the junction. Local radii of curvature, as well as other important geometrical
parameters, can be expressed in terms of this angle. The final part of the chapter
discusses the different symmetry cases that are associated with the different loading
configurations. A symmetry index is devised to refer to the four different symmetry

cases that will be encountered in this study.

§2.1 Limitations and Assumptions

The following limitations and assumptions are used in order to define the prob-

lem to be analyzed:
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Figure 2.1

a) Coordinate axes and dimensions of the cylinder-to-cylinder ideal-
ized model, b) External loads applied to the two cylinders.
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1) Both cylinders have closed circular cross sections and are considered thin. This

2)

3)

)

5)

7)

translates into the requirement that

, — >10 (2.1.1)

The nozzle intersects the vessel perpendicularly at the vessel midspan.

The length L of the vessel is assumed to be large enough to cause uncoupling
between the junction of the cylinders and the vessel ends. Using the definition

of the decay distance for a cylinder given by Fliigge (1960), this reduces to the

requirement that

L > VRT (2.1.2)

This should be considered as a necessary condition. Because of the slowly
varying, self-equilibrating solutions the sufficient condition on length is more

involved, depending on the specific loading and on the details of end constraint.

The nozzle is assumed to be long enough such that external loads on the nozzle
can be replaced by statically equivalent membrane stresses away from the free

edge.

The junction of the two cylinders is assumed to be ideal. No reinforcement or

fillet weld is located at the junction on either shell.

The two ends of the vessel are unreinforced and placed on top of saddle sup-
ports. These supports cause no restraint on the cylinder face against bending
or stretching. As a result, the boundary conditions are that all the normal

stresses in the vessel vanish at the supports.

The upper edge of the nozzle is free to displace in all directions. This edge will

be used for the application of the external mechanical loads to the structure.
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8) In the special case of internal pressure loading, the three ends of the structure

are assumed to be covered with bulk heads in order to contain the pressure.

9) The material is assumed to be homogeneous, isotropic, and linearly elastic.

The two cylinders may be made of different materials.

10) All the applied loads are assumed to be well below the buckling loads of the

structure.

§2.2 Loading Configurations

A structure consisting of two intersecting cylinders can be loaded by a wide
variety of external loads. However, certain specific load types are considered impor-
tant because of their common occurrence in real structures, or because of associated
high stress concentration factors. Mechanical loads applied to the nozzle are exam-
ples of such loads. Table 2.1 gives a list of the loading cases selected for use in this

study, with the definition of the loading parameter Iload.

Iload Description Notation
0 internal pressure in both cylinders Po
1 external axial load on the nozzle P
2 external longitudinal moment on the nozzle My,
3 external transverse moment on the nozzle Mc
4 external twisting moment on the nozzle Mr
5 external axial load on the vessel F;
Table 2.1

Description of the different loading configurations and the correspond-
ing notation.
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§2.3 Geometry of the Intersection Curve

In this section, the geometry of the intersection curve between the two in-
tersecting cylinders is investigated. First, the exact intersection curve, which is
valid for all values of d/D, is computed. This is followed by a discussion of the
approximations that can be made for small values of d/D.

2.3.1 The Exact Intersection Curve

The geometry of the model is illustrated in Figure 2.1, The origin of the
coordinate axes z-y-z is located at the intersection point of the axes of the two
cylinders. The angle ¢ is the circumferential angle for the vessel, measured from
the top, clockwise. The angle # is the circumferential angle for the nozzle measured

from the z-axis, counter-clockwise.

By introducing the unit vectors €y, €y, and €,, the midsurface of the vessel

can be described uniquely by using the position vector

p1 = z€x+ Rsingé€, + Rcos¢e, (2.3.1)

Similarly, the position vector for the nozzle midsurface is

pa = Tocosf€x + rosinféy + z & (2.3.2)

All points on the intersection curve I' are common to both position vectors. Thus,

along I' the following equation is to be satisfied

z€x+ Rsing€y, + Rcos¢p€; = rgcosf €y +rosinbf ey + 28, _(2.3.3)

Equating the coefficients of €4 yields
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z = rgcosf (2.3.4)
In a similar manner,
- Rsin¢g = rgsiné (2.3.5)
Rcos¢p ==z
which yields
— in (70 o
¢ = arcsin (R sin G) (2.3.6)

By examming the previous equations, it can be observed that the coordinates
of any point on the intersection curve can be uniquely defined using the angle 8
and the dimensions of the cylinders. However, it was found that the circumferential
angle v is a better choice for the independent variable. The angle v is the projection
of the angle # on the cylindrical surface of the vessel. By examining Figure (2.2),

it can be shown that

—dz 1 dx df
_ _ _ldzdd 2.3,
Y= Rds ~  Rdbds (2:3.7)
Using (2.3.4) and (2.3.6)
dzx .
= T sin 8 (2.3.8)
do  rocosé

ae Rcos¢
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-dz dy
'dazé’\fqus
.4 -

ds

Figure 2.2

A small opening in the surface of the vessel illustrating the difference
between the circumferential angles 8 and 7.
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By substituting in (2.3.7)

tany = tanfcos¢ (2.3.9)

It is observed that if the diameter of the nozzle is very small relative to the vessel
(cos ¢ = 1), the angle v becomes the same as 8. However, for large d/D ratios,

there is a substantial difference between the two angles.

The incremental arc length can be computed using (see Figure 2.2)

(ds)? = (dz)” + (Rdg¢)? (2.3.10)

Dividing by (d)? and using (2.3.8,a-b) produces

ds\? 29
(S) =r{2)sin29+rzcos

il P
df cosy (2.3.11)
.2
o sin® @
=13
sin“ y
As a result, the arc length can be defined as
ds = r,dé - (2.3.12)
where
Ts =To S.me (2.3.13)
sin -y

The arc length can also be measured by using the geodesic radius of curvature r,

and the angle
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ds = rydy (2.3.14)
where
. sin @ cos? @ cos ¢ 1 (2.3.15)
r, = - ..
g 0 sin -y cos? 4 cos? ¢ — sin® ¢ cos? 8
which has the special values
o ifd=0
re = (2.3.16)

roy/1— (ro/R)? i 6 =7/2

The geodesic curvature of the opening in the vessel can be computed by evaluating

the inverse of the radius of the geodesic curvature.

For cases where the diameter ratio is very small, which resemble a cylinder

intersecting a flat plate, the following approximations can be made

Using these approximations, it can be shown that both r, and ry; reduce to the
rachus of the nozzle ry. The deviation of the geodesic radius of curvature r, from
the value of the nozzle radius in the case of large diameter ratios is illustrated in

Figure 2.3.

For the nozzle, the angle a represents the angle between the intersection curve

and the horizontal plane (see Figure 2.4). It can be shown that

—dz
To dB

tano =

(2.3.18)

Differentiating {2.3.6) and substituting produces
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1.5

rq/To0

0.54

1 1 i J 9
0 /2 T

Figure 2.3

Variation of the normalized radius of geodesic curvature (ry/ro) for
an opening in a circular cylinder with changes in the diameter ratio

(d/D= 0.0, 0.5, and 0.8).
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Todﬁ

-dz
ds

Figure 2.4

The intersection curve I' on the lower edge of the unrolled nozzle
describing the angle «.
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tana = tan¢ cosf (2.3.19)
It is also possible to express the angle « in terms of + as follows
rodf ro sin -y
= = = = — 232
cosa ds Ts sind (2320)
Differentiating (2.3.20) one can obtain the derivative
do  sin-ycosb(rg/ry) —sinfcosy
da _ 2.3.21
dry sin o sin® 6 ( )
which has the following values along the two major axes
d ro/R ifd =0
- = (2.3.22)
v —ro/R if 6 = /2

2.3.2 Approximate Representation of the Intersection Curve

It was mentioned in Chapter 1, that some investigators made certain approxi-

mations to the shape of the intersection curve for cases with small diameter ratios.

The accuracy of such approximations is studied using four models with different

d/D ratios. The nozzle radius of the four models is ro. The vessel radius has a

different value for each case such that

7o
-— =10, .5, .8, 1.0
R 3 .5) 3

(2.3.23)
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The shape of the first quadrant of the intersection curve I' on the unrolled
vessel is plotted in Figure 2.5 for the four models. It is clear that for a diameter
ratio up to 0.5, the opening can be represented by a circle. Larger diameter ratios
are associated with intersection curves that can not be represented by a circle. In the
case of the diameters of both cylinders being equal (d/D = 1), the intersection curve
has a sharp corner along the transverse axis. The existence of this discontinuity in
the slope of the intersection curve is one of the reasons the approach is not valid
for d/.Dzl.

The same observations can be extended to the intersection curve on the lower
edge of the unrolled nozzle. The edge may be assumed to be flat as long as the

diameter ratio is less than 0.5 (see Figure 2.6).

§2.4 Directional Vectors

A set of orthonormal vectors is needed to describe the direction of actions
on the boundary of each cylinder. For the vessel, the unit vectors .&1 and A,
describe the vectors normal to the vessel surface and tangent to the intersection

curve I' respectively. These can be expressed as

Ay =sing &y, +cosd &, (2.4.1)
Az = cosa[—sinf&, + cos 6 &, — tan a & (2.4.2)
The vector Ajg is the unit vector normal to the intersection curve and tangent to

the vessel midsurface. It can be evaluated by computing the cross product of the

other two unit vectors Al and As.

¢
=2 €x —sinfcos ¢ €y +singdsind e, (2.4.3)

-
Ag =cosa |—
cOoS

For the nozzle boundary, &; representsthe unit vector normal to the nozzle surface,
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zh

Figure 2.5

The first quadrant of the intersection curve I' on the unrolled vessel
for d/D= 0.0, 0.5, 0.8, and 1.0 .

yA
f d/D =0

1"09

Figure 2.6

The first quadrant of the intersection curve I' on the unrolled nozzle

for d/D= 0.0, 0.5, 0.8, and 1.0 .
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and ap represents the unit vector tangent to the intersection curve. These can be

defined as

—+

A1 = cosféx + sinb &€, (2.4.4)

B2 = As (2.4.5)

The unit vector &y is the vector normal to the intersection curve and tangential

to the nozzle midsurface, defined as

ds = —sinasin § €x + sinacos €y + cos a €, (2.4.6)

§2.5 Symmetry

By examining the geometry of the model and the effect of the different loading
cases, it can be observed that for each loading case, certain symmetry requirements
of the solution exist. For the cases of internal pressure, radial load on the nozzle, and
axial force on the vessel (Iload= 0,1,5), the distribution of stresses is symmetric
about both the longitudinal and transverse axes. Stresses are symmetric about
the longitudinal axis but antisymmetric about the transverse axis for the case of
a longitudinal moment on the nozzle. The opposite is true for the circumferential
moment on the nozzle. Thus, the solution for only one quarter of the problem (e.g.
0 to w/2) is sufficient to evaluate the stresses around the complete junction. Since
the solution will be in the form of a sum of a Fourier series, the selecﬁion of the

appropriate trigonometric function depends on the loading configuration (see Table

2.2).
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ILOAD ISYM Trigonometric Functions
0,1,5 1 cos 17y (n=0,2 4,...)
2 2 cos n7y (n=1,3,5,...)
3 3 sinny (n=1,3,5,...)
4 4 sinn-y (n=2,4,86,...)
Table 2.2

Trigonometric functions of the Fourier expansion for the different
loading cases. Either even or odd harmonics are needed depending on
the symmetry.
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Chapter 3

Solution for a Circular Cylinder

The elastic behavior of the circular cylinder has been investigated thoroughly
over the past few decades more than other types of shells because of its simple
geometry and common use. Circular cylinders were also studied in detail because
they exhibit the characteristic load-resisting states of shells (i.e. membrane, inex-
tensional, and edge bending). In this study, solutions for the circular cylinder are
needed for use as the basic “building blocks” for the solution of the two intersecting
shells. This chapter is devoted to the evaluation of stresses and strains in a circular
cylinder due to edge loading. A set of simple, accurate equations for the cylinder is .

developed using one of the several possible approaches to the problem.

§3.1 Equilibrium Equations

A arcular cylinder with midsurface radius B and constant thickness 7' is
shown 1n Figure 3.1. The surface of the cylinder is free of any external loads, since
interest is limited to edge loading only. For an element ABCD (see Fig. (3.2)), the

equations of force equilibrium in the z,y, z directions reduce respectively to

ON, | ONuy _
8x ' Ro$

Ny 0Ny Qs
-E(%_'— 3z R

0

0o (3.1.1)
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Figure 3.1

A thin circular cylindrical shell of mean radius R and thickness T

Qs 0Qus _ No _

Ros T 9z RO

Similarly, the equations of moment equilibrium about the z and y axes are

3M¢ 6M,;¢, _

Ros T or —Q=0

oM, OM.4 B

% T Ry -Q.,=0 (3.1.2)

$3.2 Historical Review of Existing Solutions

Using stress-strain and strain-displacement relations, Fligge (1960) reduced

the equations of equilibrium for a circular cylinder to a set of three differential
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z
M T M L)
Y, ~
M¢
/ e
T MYy (b)

X

Figure 3.2

Stress resultants acting on the boundary of an infinitesimal element
of the cylinder surface (ABCD), a) membrane stress resultants and
transverse shears, b) bending and twisting moments.
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equations in terms of the midsurface displacements u,v, and w. By retaining as

many terms as feasible in the process, his equations reduce to

1—v 14+v T? [1-v 1—w

Urr + 5 Ugg + 5 Vz¢é +vwz + 12R2 > Ugpp — Weza + > Wegp| =0

14w 1—v 7 [3 3—v

Tuxqs + vgg + 5 Vrz + We + 1202 [5(1 — V)Urx — Twz:qﬁ] =0

e 4 v 4w + T2 [1—-v 3 — Vv +
Vit g prpngneal e - T T rrrzs
¢ 1oR? | o ‘g T Herr T T eee T U
F2Warg4 + Weges + 2wod + 'UJ] =0 (3.2.1)

where

() _a(..)
(.)e = R (e =557

Although this set of equations is accurate, it is also cumbersome and very

difficult to solve, which explains why it has been avoided most of the time.

During his investigation of buckling of circular cylinders, Donnell (1933) de-
rived a much simpler set of equations. His equations are considered equivalent
to applying certain approximations to Flugze's equations. These approximations
include neglecting terms of of order (T/R)® 1n the stress-strain relations, and ne-
glecting the effect of the displacements u and v on the bending stresses. These

assumptions produced a very simple set of equations described as

1 \? 8w
AAAAW + (%) 6? =0
Bw FPw

AAy = v

813  R28z0¢? (3.2.2)
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Fuw 4 Pw
0z20¢  R34°

AAv = (2+V)R

in which

9%(...)
Oz?

&(...)

Al.)= Ry

+ (3.2.3)

and the reduced thickness of the cylinder is

C = T//12(1 = ?) (3.2.4)

where v is Poisson’s ratio.

By examining (3.2.2) it is obvious that this set of equations is much simpler
to solve than (3.2.1), which led to its popularity. However, as Hoff (1955) pointed
out, the acquired simplicity in (3.2.2) leads in some specific cases to unacceptable
errors. It was shown that the accuracy of the solution of (3.2.2) deteriorates as the
wavelength of deformations increases. In éther words, Donnell’s equations are not
accurate for handling the lower harmonics of the solution. This is exhibited by the

absence of ring and beam bending solutions to the equations.

This led Morley (1959) to the developmént of another set of equations which
matches the accuracy of (3.2.1) and the elegance and simplicity of {3.2.2). Using
an ad hoc approach, he replaced the first equation in (3.2.2) by

! )284“’ _ (3.2.5)

2 rT— —
AAA+T w (RC’ Bz

while retaining the same two equations for u and v. Numerical results showed that

a significant improvement in the accuracy of the solution of (3.2.5) over (3.2.2).
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As pointed out by Novozhilov (1964), another approach was used by Fein-
burg to develop equations for the cylinder using a complex formulation and the
static-geometric analogy (see §3.3.2). This approach led to a single complex-valued

equation

1 90
ALY + Br g

= 0 (3.2.6)

where the dependent variable ¥ is a complex stress-displacement function

t

T=w — o
Y~ ETC

(3.2.7)

in which @ is the Airy stress function and FE is the modulus of elasticity.

One of the advantages of using (3.2.6) is that the order of the equation is half
of that for (3.2.2), which leads to a reduction in the computation. Another ad-
vantage is the ease of prescribing stress boundary conditions because stress can be
easily expressed in terms of the stress function @, in contrast to the more compli-
cated stress-displacement relations. However, (3.2.6) has the same shortcomings of
Donnell’s equations, primarily that solutions for ring and beam bending are miss-
ing from the equation. As a result, Novozhilov proposed an improved equation
that includes the missing solutions in which the dependent variable is composed of
stresses and curvatures for the real and imaginary parts, respectively. His improved

equation has an effect similar to that of Morley’s improved equation.

§3.3 Sanders’ Equations for the Circular Cylinder

Of the different formulations for the cylinder equations, it was decided that
the equations derived by Sanders are the best choice for use in this study, because
of their simplicity, consistency, and accuracy. These equations were derived using

ezact equilibrium equations, ezact strain-displacement relations, and approzimate
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stress-strain relations. The use of these approximate relations is justified by the
fact that the errors it introduces are of the same order of magnitude as the error

that has already been introduced by using the Kirchhoff hypothesis.

3.3.1 Solution of Sanders’ Equations

According to Simmonds (1966), using the stress-displacement function ¥ de-

fined in (3.2.7), Sanders’ equations can be reduced to

2v i 0V
AAY + mm — oy = 0 (3.3.1)

For a complete cylinder, the solution for (3.3.1) is periodic in ¢. This permits the

expression of ¥ in the form of a Fourier series

o0

= Y % (Aucosng + Basinng) (3.3.2)
n=0,1,2,..

In the subsequent work, the solution is assumed to be symmetric about the longi-
tudinal axis by retaining the cos n¢ term and dropping the sinn¢ term. However,
sinn¢ may be used instead to represent the anti-symmetric cases about the longi-
tudinal axis by replacing cosn¢ with sinn¢, and sinn¢ with (—cosn¢) in all of

the following equations.

Since the different harmonics of (3.3.2) are uncoupled, a general solution for
each harmonic n is developed by dropping the summation sign. Using (3.3.2}, it

can be shown that

o z , 2 .
5az = %—2- ef*/7 cosng = ﬁ\I’ (3.3.3)

and
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2\11 _ 2 _ 2
R(zadﬂ = };, e/ cosng = —n\I'

In this case, the Laplacian reduces to

Substituting the previous three equations in (3.3.1)

iR

(52—"2)2"”2+ C‘fz _

The complex quantities 74, 73,T;, and T; are introduced such that

Ty(z,£) = e**/R
Ti(z,€) = €T
Ty(z, ) = (1 -
Ta(z,8) = (T3

62(62_‘”‘2) )T
Ty k.

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

The stresses and strains in the cylinder can be expressed using the complex quan-

tities 71,73, Ty, and Ty as explained by Steele and Steele (1983).

a) Stress resultants:
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N = Im(—T3)cosné
Ny =Im(-T; + T;) cosng
Nz¢ =Im (zl—) sinng
n
M, = Re[-T3 + (1 — v)T2]cosng
My = Re[~(1 ~ v)Tp — vT3] cosng (3.3.8)

Mes ={(1—v)Re (:g-l-) sinng

Q: = Re (_T:P) cos ng
Qs = Re (%—3-) sin ng

where Re and Im indicate the real and imaginary parts of the function, respec-
tively.

b) Curvatures and strains:

€ = ETCIm[(l + )Tz + vT3}cosné

€p = ETCIm[ =T3 + (1 + v)T3) cosné

Kz = E; c2 Re(—Ts + Ty) cosné

Ko = Tm 02 Re(~T;) cosné (339)

_(1+4v) =T\ .
€rgp = FTC Im - sinng

1 T,
T= ETCzR( )smnqﬁ

where €, €4, €;4 represent the midsurface strains, x;, x4 represent the curvature

changes, and 7 represents the twist.

On an edge == constant, four force quantities will be acting. These are;

M,, N, Nz'r,i‘», Ve
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where the last quantity (V) represents the effective Kirchhoff transverse shear

oM,
Vo= Qe+ oy
1 (3.3.10
= R€ [—T4 — (1 — V)T]] -}}'
The four force quantities are arranged in a force vector
([ M, ) f—T3+(1—D’)T2‘
RVZ -T4 - (1 - V)T1
Fiz, &) =< > = Re 4 > cosng (3.3.11)
CN, Ty
8N ,
L CT¢£ ) \ —ETI /

Some of the elements in F; have been multiplied by the constants R and C
in order to simplify the algebra. For convenience, the derivative of the tangential
shear %ﬁ is used instead of N4 in order to express all elements of the force

vector as functions of cosn¢ instead of having mixed cosn¢ and sinn¢ terms.

In a similar manner, the displacement vector D, including the strain and

curvature change measures at the edge of the cylinder, can be expressed as ;

( —ETC'Z;:,"‘—; ( -1y )
ETC%ky oIy
Dz, &) = W b = Im < : cosng (3.3.12)
ETCRkq Ty + (14 )T
\ .ETCE¢. /’ \ T3 — (1 + V)T2 /

where k4 represents the geodesic curvature.

In the displacement vector, strain and curvature measures were used instead

of the displacements of the midsurface for several important reasons. One of the
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reasons is the desired elimination of rigid body translation from ID,. Another
more important reason is the need to avoid singularities in the cylinder when edge

displacements are prescribed (to be discussed in Chapter 4).

3.3.2 The Static-Geometric Analogy

Goldenveizer’s (1961) static-geometric analogy is a useful tool for solving some
elasticity problems. Whenever it i1s applied properly, it can reduce an eighth order
problem to fourth order. The-analogy is linked to the idea of stress functions in
plane elasticity. It is based on the principle that there is a certain similarity between
the equations of equilibrium and the equations of compatibility. This is illustrated

by examining the equations for a shallow cylindrical shell

1 89
(RC)AAw + BTC 822 0 (3.3.13)
-1 1 0w
WAA‘I’ + R—c,“é;‘i“ =0 (3314)

The analogous structure of the two equations is evident, and makes it possible to

combine both equations in one single complex equation

AAY + ——— = 0 (3.3.15)

where ¥ is given by (3.2.7).

Furthermore, by examining (3.3.11) and (3.3.12), it can be observed that each
of the elements of D, correspond to an element in F, if v is replaced by —v. The

correspondence is as follows

M, <= ETCe, , RV, < ETCRx, (3.3.16)

an 2@
34 — —-ETC 5%

CN, < ETCQ.‘w, s C
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§3.4 Solution for a Semi-infinite Cylinder

The solution for a semi-infinite circular cylinder, extending from z = 0 to
x = co is simplified by the fact that there is no coupling between the two edges.
Thus, attention is limited to the solutions at z = 0 that decay along the length of
the cylinder (z < 0).

For each harmonic n, the solution of (3.3.6) provides four values for the complex
root ¢£. However, only the two roots with positive real part (&1, £2) will be used, to
accommodate the requirement that all quantities should decay exponentially along

the axis of the cylinder.

By introducing four real arbitrary constants, (3.3.7-a) can be generalized as

To(z, £) = (1 +cg) 817/R 4 (c3 4 icy) eb2%/R (3.4.1)

The force and displacement vectors F,, and D, can be expressed in terms of the

arbitrary constants. In matrix form, the relationships are

F, =FM, x ¢ (3.4.2)
D; = DM; x ¢ (3.4.3)
where
€1
c =<2 | (3.4.4)
c3 | .
€4

The matrices FM,, and DM, are 4 x 4 matrices that were generated on a column-

by-column basis by interchangeably computing the real and imaginary parts of F;
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and D; using

£ = &, & ,and z = 0

as illustrated in (3.4.5)

FMz = [{ReFI(O:é‘l)} {—IMF:(U,&)} {REF;{O,&)} {_ImFﬁ(O: 62)}]

DM, = [{ReD,(O,&l)} {=ImDJ0,£,)} {ReDA0,£2)} {FIsz(G,&)}]
(3.4.5)

The four constants ¢, ¢z, €3, ¢4 indicate that there are four arbitrary quanti-
ties to be prescribed at the edge (z=0) of the cylinder. In general, a combination
of four of the elements of F, and D, are prescribed, provided that it satisfies equi-
librium and compatibility (see §3.5). The choice of which elements are to be used
is determined by the problem and the symmetry requirements along the transverse

axis.

§3.5 Equilibrium and Compatibility

As stated earlier, the prescribed edge quantities need to satisfy the require-
ments of force and moment equilibrium, and deformation compatibility. It can
be shown that any single harmonic periodic distribution of forces on the edge is

self-equilibrating as long as

n > 2

By examining (3.3.6), it can be observed that for the two lowest harmonics (n =

0, 1), two of the roots (&, &) will be identically zero. So for these special cases,
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the solution for the semi-infinite cylinder depends on one root only £2, and has only

two arbitrary constants instead of four.

3.5.1 Axisymmetric Distribution (n = 0)

This case represents the membrane behavior of a cylinder loaded along its axis.
For this loading type to be self-equilibrating, the N, © component of the solution
has to vanish. Similarly, the tangential shear and the twist are also non-existent

because of the axisymmetry of the solution. Thus,

(N =0

(NVeg)'? = 0
© (3.5.1)

(ETC?*r) =0

(ETC?%:4)? = 0

where the superscript n indicates the Fourier coefficient of the nth harmonic.

3.5.2 Asymmetric Distribution (n= 1)

In order for a cylinder subjected to an asymmetric loading distribution to
remain in equhbrium, it has to satisfy the moment equilibrium equation about the

y-axis (Figure 3.3)

2m 27

M, cos ¢ Rd¢ + N,Rcos¢ Rdp =0 (3.5.2)
0 1]

This relation can be expressed in terms of the Fourier coetficients as

2r 2w
R(MY f cos? ¢ dp + (N,)") R? / cos pdp =0 (3.5.3)
4]

0

which reduces to
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4

Ny = N cos ¢

Figure 3.3

A circular cylinder subjected to an end asymmetric membrane stress
resultant distribution N, = N, il) cos¢ .

(NP = %1 (M,)® (3.5.4)

This indicates that the there is a dependency between the elements of the force
vector F,. It can also be shown that a similar dependency exists between the

elements of D, .These dependencies are summarized as follows,

(ON™ = = (M)

N\ _ —C )
(C % ) =g (B

A0 g (3.5.5)
(-ETC?E-;-) =:}T(ETCR59)“)

(ETC?4)Y = %(ETCE,;,)“’

As a result, for the special case of n=0 and n=1, the order of the problem is

halved and the force and displacement vectors reduce to
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M, _ { ETCRxy
() mo () s

and the vector of the arbitrary constants becomes

c= (z:) (3.5.7)
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Chapter 4

The Cut Method

In order to analyze the stress fleld at the junction of the two cylinders, it is
essential to evaluate “stiffness” coefficients that relate the force quantities to the
displacement quantities along the boundary of the opening in the vessel. Unlike
the problem of a circular hole in a flat plate, stiffness coefficients for an opening
in a cylindrical shell may be impossible to evaluate in a closed-form. This is due
to the loss of the axisymmetry of the problem, and the complicated interaction
between the bending, inextensional, and membrane behavior of the cylinder. This
chapter is devoted to the description of the cut method, which is a new technique

for generating the stiffness coefficients for the low harmonices of the solution.

§4.1 Description of the Method

The first step of the approach is to make a through-thickness circumferential
cut at the top of the cylinder (see Figs. 4.1 and 4.2). This cut is located along
the circumferential arc at midspan (z=0) and does not extend outside the region
covered by the nozzle. As far as the physical wall of the vessel is concerned, the
cut 1s fictitious, since it is made in the region of the opening. The size of the cut is

defined using the angle 3, where
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4. The Cut Method

Figure 4.1

Position of the circumferential cut in the vessel surface extending in-
side the zone covered by the intersecting nozzle.

Figure'4.2

Cross section of the nozzle-vessel junction at z = 0, illustrating the
position of the cut. The size of the cut is determined using the angle

B; Eq. (4.1.1).
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f = 2 arcsin (3—%) - (4.1.1)

It is possible to visualize the vessel as two separate cylinders which are joined
at z = 0. The first extends along 0 < ¢ < L/2 and the second along —L/2 <
z < 0. At z = 0, the two cylinders are continuous outside the cut (|¢| > 5/2)
but not inside the cut (|¢| < §/2). Therefore, arbitrary distributions of force or
displacement discontinuities may be precribed on the edges of the cut. However,
these distributions must satisfy the continuity and regularity requirements on the

circumference outside the cut, where the two cylinders are continuous.

For example, the functions f;(¢), illustrated in Fig. 4.3, will be used in the
cases where there is symmetry about the longitudinal axis (Isym=1,2). When
the loading configuration is such that there is symmetry about the transverse axis
(Isym=3,4), another set of functions ¢;(¢) are used as the cut distributions (see
Fig. 4.4).

By examining Figure 4.3, it can be seen that the functions fi(¢) can be ap-

proximated as

cosgL_ﬁlm for |¢| < 3/2;
fi(¢) ~ 1=1,2,---,7 (4.1.2)
0 for |¢| > B/2

The main difference is that the functions shown in Figure 4.3 are corrected to
make the slope f!(¢) vanish at the ends of the cut. This makes the transition from
inside to outside the cut much smoother and ultimately leads to faster convergence
when the cut functions are expressed in the form of a Fourier series around the

complete circumference.

For example, consider the function fi(¢) and its approximate counte:part
Fi1($), which are shown in Figure 4.5 . By expanding each function into a Fourier

series, the Fourier coefficients can be evaluated. By comparing the two sets of



4, The Cut Method 47

Figure 4.3

The cut distribution functions f;(¢), for Isym=1 and 2. The value of

all the functions is zero outside the cut (|¢| > 8 /2). These functions
are even about ¢ = 0.
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Figure 4.4

The cut distribution functions g;(¢), for Isym=3 and 4. The value of
all the functions is zero outside the cut (|¢| > §/2). These functions
are odd about ¢ = 0.
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" F ()

0 0.637 0.424
1 0423 0.509
2 -0.085 0.073
3 0.036 -0.008
4 -0.020 0.002
5 0.013 -0.001
6 -0.009 0.000
7 0.007 0.000
8 -0.005 0.000
9 0.004 0.000
10 -0.003 0.000

Table 4.1

The lowest ten Fourier coefficients for the functions F1(¢) and fi(¢)
shown in Fig. 4.5 (8 =60°).

Fourier coefficients, listed in Table 4.1, one can observe that the smoother function

fi(¢) converges much faster than JF;(¢).

$4.2 Discontinuities on the Cut

It was illustrated in §3.3 that for a semi-infinite circular cylinder, four distrni-
butions of force or displacement quantities can be prescribed at the edge z=0. For
the cut method, these distributions will be composed of a set of cut functions fi(¢)
or gi(¢), depending on the symmetry requirements. For example, in the case of

Isym =1 or 2, these four edge distributions are
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Figure 4.5

Comparison between two similar functions fj(¢) , which has a zero
slope at ¢ = 8/2, and Fi(¢) which has a nonzero slope at ¢ = /2
(see Table 4.1).

NHC
51(¢) = a1 f1(4) + Z bi fir1(9)
=1
2xNHC
- S2(¢) = a2 fi(¢) + E bifi-nuc+1(¢)
i=NHC+1
ax NHC—1
Ss(¢)=asfi(@)+ > bificaxnHc+1(4)
i=2x NHC+1
4xNHC-2

Si(@) =asfi(@®)+ D  bificsxnncs2(9)

i=3xNHC

(4.2.1)

where NHC is a parameter that indicates the number of harmonics to be
handled by the cut method in the analysis. The significance of this parameter will

be explained later, but for the current work it is sufficient to define it as
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2< NHC <6 (4.2.2)

In (4.2.1), @i and b; represent arbitrary constants. The first group is used to
satisfy the regularity requirements of the solution, and the latter to generate the

stiffness coeflicients.

Each of the edge distributions 5;(¢) will correspond to one of the eight elements
of the force and displacement vectors along the flat edge of the cylinder, F, and
D, , respectively (see (3.3.11)). The symmetry requirement for the solution dictates

which quantities are to be used as the appropriate cut distributions according to

Table 4.2 .

The quantities selected in Table 4.2 for each symmetry type represent the ones
that have to be identically equal to zero outside the cut (|¢] > 8/2). For example,
in the case of a longitudinal moment applied to the nozzle ( Isym=2), continuity
between the two semi-infinite cylinders requires that the midsurface displacements
w and v along the the £ = 0 plane must be zero. Using the following definitions of
the circumferential curvature x4 and the circumferential strain eg in terms of the

midsurface displacements

5w . 1 Ov
Ky = — —
R29¢%? = R RO¢ 5
o (4.2.3)
““~Ros R

it can be concluded that x4 and ey are also zero at midspan.

In addition, to satisfy equilibrium between the two semi-infinite cylinders, the
moment and in-plane stress resultant have to be zero along the circumferential arc

located at z = 0. As a result, for this symmetry case

M, =N, =64 =¢€4=0, for x=0and |¢|>5/2 (4.2.4)
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Isym S1(4) Sa(¢) S3(¢) Sa(¢) Function
1 Rv, C%z  -ETC*)  ETCRs, fi($)
2 M, CN, ETCx, ETCe, Fi(¢)
3 RV, o5 ~ETC*%*  ETCR&, 9i(#)
4 M, CN, . ETC%xy ETCey 9i{4)
Table 4.2

Force and displacement quantities to be used as cut distributions for
each syminetry case.

which illustrates why these quantities were listed in Table 4.2 as the appropriate

cut functions corresponding to Isym = 2.

The next step involves the expansion of the cut distributions 5;(¢) in the form
of a finite Fourier series. This is necessary to be able to utilize the solution of the

equations for the circular cylinder given in §3.3 .

For cases with Tsym =1 or 2, the Fourier series expansion 1s

N
Si(¢) = Z S'-(n) cosng : t=1,2,3,--: (4.2.5)

n=0,1,2,

where Sgn) represents the Fourier coefficient of the n-th harmonic for the function
Si(¢). The parameter N is an arbitrary integer to determine the number of har-
monics to be used in the series. However, since the Fast Fourier Transform method
will be used to perform the Fourier series transformation, the restriction on N 1s

that (see Brigham; 1974)
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. J=1,2,3,-- (4.2.6)

£84.3 Ceompatibility and Equilibrium Requirements

In Chapter 3 it was mentioned that arbitrary edge distributions may be pre-
scribed along the flat edge of a cylinder as long as they satisfy the over-all equilib-
rium requirements for the cylinder and the requirements of compatibility between

the prescribed deformations.

Using the appropriate functions from Table 4.2, it can be shown that (3.5.5-a,b)

transform into

Sé‘) = —%Sil) for Isym=2,4 (4.3.1)
and
sw_Cam Tsym =
Y = g5 or sym =1,3 (4.3.2)

Both relations can be summed into one general requirement which is valid for all

values of the symmetry index

Sgl) + (_1)Isym%5§1) =0 for Isym — 1’ 2,3’4 (43.3)

Similarly, the compatibility requirements (3.5.5-¢,d) can be represented by

C

Sél) _ (_1)I.sym_-_R_5il) -0 for Isym =1,2,3,4 (4.3.4)
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In addition to the previous over-all equilibrium and compatibility equations, the
prescribed distributions ought to satisfy the regularity requirement of all quantities
at the two tips of the cut (|¢| = 8/2). For example, when the derivative of the
in-plane shear ?J(;V_;a is precribed on the cut, it is not sufficient to make it vanish
outside the cut. It is also necessary to make the shear N, equal to zero outside

the cut. Therefore,

Blz anN,
(Nzg)gj2 = / “dg=0 (4.3.5)
0 d¢

Using Table 4.2, the previous expansion can be written as

Bi2
Sa(d)de =0 for Isym=1,23,4 (4.3.6)

0

Using the same argument on the prescribed displacement function S3(¢), another

requirement that has to be satisfied is

Bf2
/ Si(@)dp=0 for Isym=1,2,3,4 (4.3.7)
)

The next step is to substitute the full series expansion of the four cut functions
Si(#) (4.2.1) into the equilibrium, compatibility, and regularity equations. As a

result, one can expand {4.3.6) as

g2 2xNHC
.[o [a2f1(¢)+ Y. bifioncn(¢)| dg=0 (4.3.8)

I=NHC+1

However, since

fi(¢) =0 for  |¢|=8/2 (4.3.9)
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the upper limit of the integration can be replaced by . Then by using the Fourier

series expansion of the prescribed distributions, one can obtain

r N 2xNHC
f 3 [ D Y b Naes | cosndd =0 (4.3.10)
0 n—01,2 i=NHC+1

which after integration yields

ZxNHC

wf+ Y b Hon =0 (4.3.11)
i=NHC+1

By following the same procedure, it can be shown that (4.3.7) can be rewritten as

IXNHC-1

0 0 .
af”+ > b nnos =0 (4.3.12)
t=2x NHCH+1

Similarly, (4.3.1) can be written in terms of the Fourier coefficients of the cut

functions as follows

1) 2xNHC - C . NHC .
aft’+ Y, bflypont+ (D" [ w4 Z b ff+)1} =0 (4.3.13)
1I=NHC+1

and a similar relationship can also be obtained using (4.3.2).

By rearranging the previous identities, one can show that for any combination

of cut distributions to be valid, the following identities must be satisfied
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[ 2xNHC
0
az = — Z bf NHO+1:1/()
Li=NHC11
- 3NHC-1 ©
0
az = — Z b f—2xNHC+1jl /h
Li=2x NHC+1
NHC 2x NHC
1 1 m 1 1
alfl()_ Z bf( ) ~ (=1)T* I3l [ ()'*‘ Z bf;(-)NHCH]
i=NHC+1
AxNHC-2
1 1
awfiiV=— Y b vncss
i=3xNHC
R , 3xNHC—-1
1
+ ("‘1)1”7"5 [‘13 f =t Z fu(-—)2xNHC+1jl
i=2x NHC+1

(4.3.14)

As a result, one can select any combination of the arbitrary constants b; for
the cut solutions in (4.2.1}. Then using (4.3.14), the values of the constants a; are

evaluated in order to make the cut solutions self-equilibrating and compatible.

§4.4 Solutions at the Intersection Curve

In Chapter 3, the use of the exponential solutions of the equations for the
circular cylinder to evaluate the components of force and displacement vectors ¥,
and D, was explained. The solution was obtained by expressing the force and
displacement quantities in terms of the complex quantities Ty, T3, T3, and Tj.
Using such solutions, one can compute the forces and displacements acting on the
intersection curve due to a prescribed edge distribution (see Fig. 4.6). These new
force and displacement quantities are arranged in the two new vectors ¥ and D

respectively as follows |
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Figure 4.6

Bending and membrane stress resultants acting on the boundary of
the opening in the vessel.

[ M-\ (—ETCZQ—;
roVr ETC%k.
F = D= - (4.4.1)
CN, ETCrok,
kc%l ] \ ETCey /

By comparing (4.4.1) to (3.3.11) it can be observed that the elements of F
and D are similar to those in F; and D,. The difference is that the former
are expressed in the polar coordinates r-+, while the latter are expressed in z-¢
coordinates. In addition, two of the elements (V, and k) are normalized using the

nozzle radius ry instead of the vessel radius R.

Using the principle of Mohr’s circle (see Ugural and Fenster; 1975), it can be
shown that at any point along the intersection curve defined by the angle v, the
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radial bending moment is

M, = M, cos® vy + Mg sin? 4 + M,y sin 2y (4.4.2)

By substituting the definition of M;, My,and M4 from (3.3.8) into the previous

equation produces

M, = Re{—Ts cosng + (1 — v) [Tg cos® y + (Ts — T ) sin? 'y] cosng

(4.4.3)
T . .
—(1- v); sin 27 sin m;S}
Similarly, the twisting moment M, is
My = M (cos? v — sin® ) + (Mg — Mt)sm 2 (4.4.4)

2

which can be expanded as,

T
Myy = —(1—v)Re {?1(0052 v — sin® v) sinng + sin 2y [T2 - -2213] cos nqﬁ} (4.4.5)

The next step involves the evaluation of the equivalent transverse shear V.. Ac-

cording to Ugural (1981), it is defined as

)7
Vo= Qr+ =5 (4.4.6)

where @, is the actual transverse shear which can be evaluated using the equi-
librium of a triangular element with @; and Q4 acting on its sides. Using the

definition of these shear quantities from (3.3.8) results in
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Q. = _—;13 (5 €0s 7y os ng — n sin v sin nqﬁ) (4.4.7)

Then, by differentiating (4.4.5) with respect to v and using the relationship

o) _ 18-
Os re Ov

a formula for V, in terms of Ty, T, T3, and T3 can be obtained.

The same approach can also be applied to derive sumilar formulas for the mem-
brane stress resultants N, and N,.,. Also, by utilizing the Mohr’s ¢ircle principle
for strains and curvatures, the four displacement quantities in D can be evaluated.

The final result is that the vectors F and D can be expressed as

(-V3+(1"V)V2\

_1[4 - (1 — V)V]
F = Re (4.4.8)
V2

\ —in)

and

[ V)

)
D = Re (4.4.9)
i[Va+ (1 + V1]

\z[Vs -1+ u)Vg])

where
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1
Vi = cosng {(Tg - -2-T3)(—§ siny sin2y + 2? cos2y) + T3 cosy cos 27}
g
. 1 . T, . R
—sinng{(T: — §T3)(n cosysin2y) + ;—(6 siny cos 2y + 2;—* sin 27)}
7

T
Vy = [Tg cos® v + (Ts — T) sin® 7] cosng — {;1 sin 27] sinng
V3 = T3 cosng

Vi = T3(€ cosycosng — nsinysinng)
(4.4.10)

In (4.4.1), the derivative of the shear and the twist were used as elements of
F and D, to be consistent with the notation used in F; and D, (see (3.3.11)).
However, during the course of this study, it was concluded that it is more advanta-
geous to use the values of the shear and the twist instead of their derivatives. The
reason is that the derivative of a function expressed as a Fourier series is slower to
converge than the function itself. Therefore, to improve accuracy and convergence,
the fourth element in ¥ and the first element in D are replaced by C'N,y and
—ETC?r, respectively.

The shear Ny, can be obtained by integrating its derivative given in (4.4.8-d),

which produces

vy T
CN,, = Re (-:Vs—é) (4.4.11)
where
T
Vs = —I-%— {(Tg - %Tz«;) cosne¢sin2y + ;1 sinng cosQ'y} (4.4.12)
Ty

Similarly, the twist can be evaluated using
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—ETC’r = Re (V5 %) (4.4.13)

By comparing the relations for the force and displacement vectors for the open-
ing on the wall of the cylinder (4.4.1) to those on the end of a cylinder (3.3.11), a
strong similarity is observed. The complex quantities Vi, V,, Vi, and Vy for the
boundary of the opening correspond to Ty, T2, T3, and Ty for the circumference
of the cylinder end. It is also important to note that the static-geometric analogy,
which was observed in Chapter 3, is evident again i the equations for the boundary

of an opening in a cylinder (see §3.3.1).
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Chapter 5

Particular and Complementary Solutions for the Vessel

The investigation of stresses at the junction of two cylinders involves developing
the solutions for each cylinder independently before the application of the continu-
ity conditions at the junction. In this chapter, the particular and complementary
solutions for the vessel are discussed. The cut method, which has been introduced
in Chapter 4, is the main technique used for developing these solutions. However,

membrane solutions and asymptotic methods will also be used in certain cases.

§5.1 The Particular Solution

In order to analyze the stresses at the junction, it is necessary to evaluate the
particular part of the solution. This part includes the stresses and strains in the
vessel due to the application of the loads with a resultant force or moment. If the
vessel is subjected to internal pressure or an axial force (Iload = 0, and 5), the
particular solution is easy to obtain. Simple membrane solutions for the circular

cylinder provide the stresses and strains along the intersection curve.

On the other hand, for the loading cases that involve external loads applied
to the free end of the nozzle (Iload = 1,2,3,4), the shell resists the loads through
bending, inextensional, as well as membrane behavior. Therefore, there is no simple,
exact procedure to evaluate the particular solution. In these cases, the cut method

will be used to compute the particular solution.
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5.1.1 Internal Pressure p (Iload=0)

In this case, one needs to evaluate the stresses and strains along the intersection
curve due to an internal pressure p in the vessel. The ends of the vessel are assumed

to be closed to contain the pressure.

For a thin cylinder with internal pressure, it can be shown that the principal

stress resultants in the shell are

1
Nr("ra 46) = EPR (5.1'1)
Ny(z,¢) = pR

Using Mohr’s circle principle (see §4.4), stresses and strains at any point along the

intersection curve I' can be computed using the position angle v as follows

1 )
Ny(y) = EpR(l + sin® 7)

1 .
Ney(y) = 4—pR sin 2
pR , L, (5.1.2)
ey(7) = SET [1+ cos? v — (1 + sin® 7))
ke(Y) =
g 2ETr,

(14 v)cos2y

Because the pressure is resisted through membrane behavior of the cylinder,
there are no bending stresses or curvatures in the cylinder. Thus, along the inter-

section curve

Mo(v) = Vi(y) = 64(7) = 7(7) =0 (5.1.3)

Henceforth, all the elements of the force and displacement vectors are determined,

which completes the particular solution for this loading case.
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5.1.2 Axial Force F; (Iload = 5)

The same membrane solution that was used for the pressure loading will be

used when the vessel is loaded by an axial force F, . In this case the principal stress

resultants are

N.(z,¢) = F./(2nR)

(5.1.4)
N'#(x: 45) =0
By following the same procedure in §5.1.1, it can be shown that along T
— F; g2
r=\2xr) "7
'—Fz i
Ney = (H) sin 2y
F (5.1.5)
[ —=Z _ 2
€y = (27rRET> [1 (1+ v)cos® 7]
o = F; 1+ v 9
¢~ \2+RET/ r, 1
and
M,(v)=Vi(v)={1) =7(1} =0 (5.1.6)

5.1.3 External Loads on the Nozzle ( Iload=1,2,3,4)

The problem of a concentrated force or a couple on the surface of a cylindrical
shell has been the subject of a number of studies. The complexity of the shell
behavior and the existence of singularities beneath the applied loads have made such
investigations very difficult and complex. Using separation of variables, Flugge and
Conrad (1958) provided some results for the so-called bending hot spots in shallow
cylindrical shells. Sanders and Simmonds (1970) also developed a solution for the
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displacements in a shallow cylindrical shell subjected to concentrated forces. They
developed a new function which can be used in combination with modified Bessel

functions to evaluate the stress and strain measures.

§5.2 Application of the Cut Method

In Chapter 3, it was shown that the stresses and strains in a circular cylinder
due to prescribed distributions along the edge of the cylinder can be evaluated. The
cut method will be used to find a particular solution for the vessel when subjected
to external concentrated actions. The resultant force or moment is replaced by
statically equivalent distributions of load on the cut. The simplest cut solutions

which have the desired resultants are considered the particular solutions.

5.2.1 The Particular Solution Using the Cut Method

In order to obtain the particular solution using the cut method, it is necessary
to set all the integration constants b; to zero in (4.2.1) and (4.3.14). The other
constants a; are also set to zero except ;. This represents a distribution of either
fi or g, depending on the symmetry index, along the cut. The value of a; is
selected such that the prescribed cut distribution produces the same resultant as
one half of the applied load (see Fig. 5.1). The reason is that because of symmetry
about the transverse axis, it is sufficient to work with one half of the length of the

vessel (0 > z > —L/2), which resists only one half of the load.

For example, in the case of a radial load P applied to the nozzle, the prescribed

cut distribution is

N
RV, = a1f(¢) = a1 Z fl(n) cosng (5.2.1)

n=0,1,2,

In order to satisfy force equilibrium in the z-direction, the value of a; can be
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Y

e
e
~

B
-

Figure 5.1

Application of the cut distribution function (transverse shear V) to

the flat edge of the cylinder to represent an externally applied load
P.
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determined using

1 2T n
= /0 [al DA )cosn¢] cos¢ Rd¢ = P2 (5.2.2)
The integration causes all the Fourier coefficients fl("} to drop out except }1) ,
and this results in
P
a; = —'Tl)' (523)
2n fy

The same procedure is followed for the other remaining loading cases. The appro-

priate value of a1 for each case was found to be as follows

P/27rf1(1) for Iload =1

ot = My /2n RV for  Iload = 2 (5.2.4)
Mc/2xRg'V for  Tload = 3
MT/2?TRQ§1) for . Iload = 4

Once the value of a; 1s determined, the four cut distributions are defined using
{4.2.1). These distributions can then be used to compute the stresses and strains

along I' as described in §4.4 .

In general, the use of the cut method to evaluate the particular solution for the

vessel can be summarized by the following steps:
1) Using the value of the applied load, compute a; using (5.2.4).

2) Using (4.2.1), the four cut distributions 5y, S2, S3, and Sy are determined by

setting all the integration constants, except a; , to zero.

3) Divide the circumnference of the vessel into 2N intervals. These are used to
discretize the cut distributions to prepare them for the use of FFT for the expansion

in the form of a Fourier series.

4) For each harmonic n of the Fourier series, solve for the unknown constants ¢y,

¢, c3, and ¢4 using the matrices FM, and DM, in (3.4.5).
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5) Using these constants and the values of the coordinates =z and ¢ for the point
where the solution is needed, evaluate the complex quantities Ty, T3, Ty, and Ty

which are the used to compute V;, V3, V5, Vi, and V5 using (4.4.10).

6) The Fourier coefficients of the elements of F and D can then be determined
using (4 1 8) and (4.4.9). Then, steps 3 to 6 are repeated N times to evaluate the
coefficients for all the harmonics. These are summed up in a Fourier series in terms

of ¢ to produce the stresses and strains at one mesh point along T'.

7) Repeat steps 5 and 6 N1 times to evaluate the stresses and strains at all the
mesh points along one quarter of the intersection curve. Each of these distributions

is then expanded in a Fourier series in terms of +.

8) The nonzero Fourier coefficients of the forces and displacements are then ar-
ranged, in the same order given for F and D, into the particular solution force and

displacement vectors F, and D,.

5.2.2 Example of a Typical Particular Solution

In this example, the particular solution for the vessel when subjected to a radial
load P is evaluated. First, by following steps 1 and 2, the four cut distributions
will be defined as (see Fig. 5.2-a)

RV,(0,4) = ;—?mflw) (5.2.5)
h

Nzs(0,¢) = 7(0,¢) = x4(0,¢) =0 (5.2.6)

Using step 4, the four other quantities along the edge of the cylinder, M,, CN,,
ETC?k4, and ETCey can be calculated. Their distributions along a segment of
the circumference is plotted in Fig. 5.2-b. It should be noted that these four
quantities do not show any slope discontinuity at the tip of the cut (at ¢ = 3/2).
This is a direct result of the careful choice of the cut distributions to avoid having

singularities near the tip of the cut.
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Figure 5.2

Distribution of force and displacement quantities along the edge of
the vessel (at z = 0), corresponding to the particular solution for the
example in §5.2.2 (Iload = 1, P = 1000 Ibs, R = 10 in., 7o = 3 in.,
T = 1.0 in., ¥ = 0.3) : a) Distribution of the prescribed quantities; b)
Distribution of the computed quantities.
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Figure 5.3

Distribution of the elements of the particular solution force and dis-
placement vectors, ¥, and I),, around the intersection curve (v /2 <

4 < 7) for the example in §5.2.2.
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The next step involves the computation of the elements of F and D along one
quarter of the intersection curve. By following steps 5-7, each of these quantities
will be represented as the sum of a Fourier series. For example, the bending moment

can be computed using

N
M, = z M™ cosmg (5.2.7)

m=0,1,2,

Figure 5.3 shows the distribution of the force and displacement quantities between
v = /2 and v = 7. The smoothness of these distributions at v = r/2 indicates

that singular behavior at the crack tip is avoided.

The force and displacement quantities are then decomposed into finite Fourier
series in terms of +, using FFT. For examnple, the radial moment and the curvature

along ' will be expressed as

2(N1-1)
M= 3 MO eosny
n=0,2,4,
N1 (5.2.8)
ETC?k.(7) = ETC* Y &{Mcosny
n=0,2,4,

The Fourier series includes the even values of n only because for this loading

case the solution is doubly symmetric, which means that all the coefficients of the

odd harmonics are zero.

In terms of the even Fourier coeficients of the force and displacement quantities,.

the particular solution vectors are
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( o \ (CT(D)\

ro V¥ C";ﬁfo)
C'NEO) ToKo.(qo)
F, = CNQ,) D, =ETC eS{O) (5.2.9)
(2) Cr(
TOVr(Z) C'cgz)

\ \ ¢ )

§5.3 The Complementary Solution for the Vessel

The complementary solution for the vessel is composed of a group of self-
equilibrating sinusoidal distributions around the boundary of the opening. This
section is related to the low harmonics of such solutions. As mentioned earlier,
these harmonics are usually coupled together in a complicated fashion which makes
them difficult to solve. However, as will be illustrated in this section, the cut method

has proven to be a very useful technique for handling these harmonics.

The method includes the use of the procedure outlined in §4.3 . First, a value of
NHC is selected, which defines the number of harmonics that will be investigated
using this approach. By examining (4.2.1), it can be seen that we will be dealing
with 4 x NHC — 2 independent solutions. Each one of these solution is associated
with one of the constants &;, and will be handled independently from the others by
setting the corresponding b; to unity and all the others to zero. Using (4.3.14), the
appropriate values of the constants a; are evaluated for each case which uniquely

defines the four cut distributions Si, 52, 53, and S4.

Using the example given in §5.2.2, assume that it is desired to handle the lowest

two harmonics (n = 0,2) using the cut method. This corresponds to NHC = 2.
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As a result, a total of six different cut solutions will be needed. The first of these

solutions is obtained by using

bl == 1
b2 - 63 = b4 = bs = bﬁ = 0 (531)
Using 4.3.4, it can be shown that
ay = —by £/ fD (5.3.2)
and
ds = a3 = a4 = 0 (5.33)

Upon substituting these values in (4.2.1), the four cut distributions would be defined

as

51(8) = (-0 s 157) £1(8) + £a(9) (5.3.4)
S2(¢) = S3(8) = Sa(¢) = 0

At this stage, the same procedure which was applied to the particular solution
is used here by following steps 3-7 discussed in §5.2.1. However, in this case
the nonzero Fourier coeflicients of forces and displacements are stored in the first

columns of the new matrices FM1 and DM1, respectively.

The next step is to repeat the previous steps using b; = 1, while all the
other b; equal to zero. The Fourier coefficients of this solutions are placed in the
second columns of FM1 and DM1. The same process is repeated for a total of
4 x NHC — 2 times. The final result will be two matrices FM1 and DM1 relating
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the Fourier coefficients of the unknown forces and displacements to the integration

constants. In matrix formulation, this can be expressed as

F.=FMlxb
D.=DMlxb (5.3.5)
where
by
ba
b= : (5.3.6)
bixNHC-2

The vectors F. and D, represent the force and displacement vectors for the com-

plementary solution, respectively. They include Fourier coethcients arranged in the

same order as Fy and D, (see (5.2.9)).

£5.4 Remarks about the Cut Method

The previous section provided a description of the use of cut method for evaluat-
ing the complementary solution for an opening in a cylindrical shell. Unfortunately,
this method is not useful for handling all the harmonics of the solution for several

reasolrls.

First, it was found that the method tends to break down if an attempt is made
to use it for handling high harmonics. This is due to the fact that in order to generate
solutions for high harmonics around the intersection curve, more cut distributions
with very rapid circumferential variation will be needed. In accordance with shell
behavior, these rapidly varying functions will decay within a very short distance
from the cut. This leaves a large portion of I' unaffected by the cut distributions,

which results in similar force and displacement distributions along the intersection
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curve, for different cut distributions. As a result, some of the columns in FM1
and DM1 will be dependent which could lead to numerical difficulties during the

solution.

Another reason is the high cost of the cut solutions in terms of computer CPU
time. It was mentioned earlier that to generate the solutions for a single harmonic,
four cut solutions are needed. Although the Fast Fourier Transform and symmetry
were used whenever possible to minimize the amount of computation, a large number
of mathematical operations are required. Possibilities for improving the efficiency

have not yet been explored.
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Chapter 6

The Asymptotic Solution for the Vessel

The previous chapter included a description of the method used for handling
the complementary solution for the vessel. It was concluded that it is desirable
to minimize the number of harmonics to which the cut method is applied. There-
fore, another method will be needed to handle the high harmonics of the solution.
Because one will be dealing with distributions of rapid variation in a thin shell,

asymptotic methods present themselves as the most logical alternative.

Steele (1965) worked out the asymptotic solution for a shell of revolution with
edge loads of rapid variation. Influence coefficients for shells with positive and
negative curvatures were investigated. These were found to represent a transition
between shell and flat plate behavior. This chapter includes the application of
this general solution to the special case of a circular cylinder. It also provides
a description of the approach to be used for utilizing such solutions to generate

stiffness coefficients for the boundary of an opening in a cylinder.

§6.1 Solution for Circular Cylinders

In Chapter 3, it was shown that the shallow shell equation for a circular cylinder

of radius R and thickness T is
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i 0%
AAY + RC 322 = (6.1.1)
where
3%(--+) (-

A(-+) = B3 + (6.1.2)

R20¢?

Although (6.1.1) is written in terms of the z-¢ coordinates, it is desirable to obtain
solutions which oscillate around the intersection curve. Therefore, the solution will

be expressed in the polar coordinates (r-+).

The solution for the nth harmonic is assumed to be in the form

P = exp[—{p + inyl (6.1.3)

where p is the distance normal to the boundary measured from the boundary
outwards, divided by v2CD. The reason for this normalization is to simplify
the upcoming mathematical equations. The parameter £ is an unknown complex
function that is to be evaluated. It is assumed that £(y) is a slowly varying function
relative to the rapidly varying nature of the general solution (see Fig. 6.1). With

this assumption one may neglect the derivative of £(v) with respect to .

Using the definition of p and +, their derivatives with respect to z are

ou oS 7y

- = 6.1.4
d0x  /2CD (614
Oy _ —siny

dr rg

Using these derivatives to differentiate-by-part (6.1.3) with respect to z produces

oy -1

.a_I = ‘—é‘\/-—éﬁ [5 cosy = 1R sin'r]#) (6.1.5)
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Figure 6.1

A typical rapidly varying distribution ¥(v) around the opening in the
vessel, which is to be handled using the asymptotic solution.
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where

_ nv2CD

R == (6.1.6)
Differentiating (6.1.5) again with respect to z produces
& _ [€ cosy £ iR siny])? ¢ (6.1.7)
dz2  2CD 7 o
Similarly, differentiating (6.1.3) twice with respect to ¢ yields
8% 1 . . 2
RP04% = 3CD [~€siny £ R cosy]“ ¥ (6.1.8)

By substituting (6.1.7) and (6.1.8) in (6.1.2), the laplacian operator A can be

expressed as

1

_ ot fe2 w2
A= o= (€ -8y (6.1.9)

Substituting (6.1.7) and (6.1.9) in the shallow shell equation for the cylinder (6.1.1)

produces the eikonal equation for the unknown function £(7)

;(52 — R*)? + (£ cosy £ iRsiny)* =0 (6.1.10)

This equation has eight different complex roots, four of which correspond to solu-
tions which decay away from the opening, i.e., for positive p. Only the four roots

which have positive real parts can produce such a decay. These four roots are
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£y = V—icosy + (—i cos® v+ R% + 2RV sin ’}‘)1/2

€2 = V/—icosy + (—icos® ¥ + K2 — 28V/isin y)!/2

(6.1.11)
£3 = —/—icosy + (—icos? v 4+ R? — 2&\/2Tsin’)')1/2
€4 = —v/—tcosy + (—icos® v+ R? + 2N\/1?sin7)1/2
Using these roots, the corresponding solutions of (6.1.1) are
Y1 = exp(~Lip +in7)
1y = exp(—Eapt — inv)
(6.1.12)

P3 = exp (—Eap + iny)

Ys = exp(—€ap — in7)

%6.2 Symmetry Requirements of the Solution

By examining the four complex solutions 3, 12,43, and 14 it can be observed
~ that none of them possess any symmetry features. However, what is needed is the
development of solutions that satisfy the symmetry requirements for each of the
loading cases investigated in this study. Such solutions can be obtained using linear

combinations of the functions %y, %2, 1¥3, and 4.

The behavior of the roots of the eikonael equation is illustrated in Fig. 6.2.
It shows the values of the four complex roots &1, &2, £3, and €4 corresponding to
the 11-th harmonic for a hole in a circular cylinder (R=10, ro=5, T=1.). By
examining these roots, 1t can be observed that the four roots are related to each

other in the following manner
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(a)

(b)

-7 0 m

Figure 6.2

Variation of the roots of the eikonal equation (6.1.10) around the
intersection curve (R = 10in., ro = 5in,, T = 1.0 in., n = 11): a)
roots £1(v) and £2(7), b) roots &3(v) and £4(7) -
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€2(—7) = &(7)

€a(—7) = &(7)
&Giy) =6 +7)
a(y) = L2(m + )

(6.2.1)

Using these relationships, it can be shown that depending on whether n is odd or
even, different combinations of the four solutions 1,2, 3, and 4 produce new

function which possess symmetry characteristics. These combinations are:

Uy =y + o+ s+
Uy = thy + P2 — 93 — Py
Uy =1 — P2~ 93 + ¢y
Uy =12y — b2+ 93 — 9

(6.2.2)

Table 6.1 provides the appropriate functions to be used for each value of the

symmetry index depending the harmonic number n.

Isym Symmetry Symmetry Evenn | Odd n
about =0 about # = 7/2
1 symmetric symmetric v, P,
2 symmetric anti-symmetric v, v,
3 anti-symmetric symmetric ¥, A
4 anti-symmetric anti-symmetric ¥y ¥q
Table 6.1

The appropriate complex functions ¥;,¥,, ¥3, and ¥4, to be used
for different values of Isym and for even or odd harmonic numbers.
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£6.3 Evaluation of Forces and Displacements

The advantage of obtaining an asymptotic solution for the shallow shell equa-
tion is evident during the evaluation of the force and displacement quantities along
the intersection curve. The force and displacements vectors (see (4.4.1)) can be
expressed in terms of a new set of complex functions Vy, Va, Vi, Vi, and Vs,
which are similar to the ones developed for the cut method (4.4.10). However, in
the cut method, the development of these functions was a painstaking process. In
that case, solution in the z-¢ coordinates were obtained first and then transfered
to the r-+ coordinates. By utilizing the asymptotic solution of the shallow shell
equation, it is possible to develop approximate formulas for Vi, V2, V3, and V4 in
the r-+ coordinates directly, with relative ease. This leads to a tremendous saving

in the amount of computations involved in the analysis.

Let s3 and s; be the two vectors tangent and normal to a smooth boundary
curve on the surface of a circular cylinder. It can be shown that for such a boundary,

the following relations can be used in conjunction with (4.4.8) and (4.4.9)

Vi = (2CD)R-> (921’9)

95, \ a2
Vs = (2CD) (%’i)
Vs = (2CD)AY = (2CD) (_a;_? + %{%) s
Vi = (ZCD)RQ%%
Vs = (2CD)R 85312;’52

where 1 is the general form of the solution of {6.1.1).

In this study, s; will correspond to the arc length around the intersection

curve, which results in
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o(-) _ 19(+)
PR~ (6.3.2)

On the other hand, s2 will be the distance normal to the intersection curve. Using

the definition of the normalized distance y, it can be shown that

o) __ 18-
ds; _ JaCD on

(6.3.3)

By substituting the general form of ¢ from (6.1.3) into (6.3.1), and using (6.3.2)

and (6.3.3), the four complex functions can be expressed as;

Vi=-R.9
N RS
“2=Zcp oY
Vs = (‘52 - Nz) ) ¢' (63.4)
R

_ 2042 442y
v4_v/2C,,—DN(‘f N)"»b

Vg = :tﬁiﬁf Y
Ty

These relations, in conjunction with (4.4.8) and (4.4.9) completely define the el-
ements of the force and displacement vectors in terms of 4, the solution of the

shallow shell equation.

§6.4 Application of the Asymptotic Solution

The theory presented in the previous sections will be used to develop the stiff-
ness coefficients of the high harmonics for the boundary of the opening in the vessel.
This section gives a description of the procedure for the specific case of a doubly
symmetric distribution ( Isym = 1). The same procedure is valid for other symme-

try cases with very minor changes.
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In order to generate the solution for a specific harmonic n, where n is an even
integer, it i1s necessary to utilize solutions corresponding to both n and n — 1. By
examining Table 6.1, it can be observed that for this specific symmetry case, the
corresponding solutions are ¥; and V3. A linear combination of these two solutions

is the general solution for this symmetry case. It can be written in the form

U0t = (€1 +102)¥1 + (3 + ica) T2 (6.4.1)

where ¢1,cs,¢3, and ¢4 represent arbitrary integration constants. The force and
displacement quantities can be evaluated in terms of these constants by substituting

(6.4.1) into (6.3.4).

The next step is to repeat the same process for higher harmonics n+2, n44, ---
etc., to cover the whole range of harmonics which are to be included in the analysis.
Each of these harmonics will be associated with four new integration constants.
Finally, the complementary force and displacement vectors can be written in terms

of these integration constants. In matrix formulation, this is

F,=FM2 x c
(6.4.2)
D.=DM2xc

where F. and D, are the same vectors defined in §5.3, and ¢ is a vector including

the integration constants in the following order

Cy

(Cz\
C3
C = C4 (6.4.3)
€y

/)

The matrices FM2 and DM2 will be used in combination with the previously
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evaluated FM1 and DM1 to compute the stiffness coefficients for the opening in

the vessel.
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Chapter 7

The Total Solution Including Nozzle Flexibility

The previous chapters provided a description of the cut and asymptotic solu-
tions. The first part of this chapter illustrates the procedure used to eliminate the
dependency between the Fourier coefficients in the force and displacement vectors,
which is a direct result of the equilibrium and compatibility requirements of the
solutions. In addition, this chapter includes a description of the procedure used to
combine the complementary parts of the solution evaluated by the cut method and

the asymptotic solution to generate the needed stiffness coeflicients for the vessel.

The solution for the nozzle is also included in this chapter. To some extent, the
analysis is similar to that for the vessel, though simpler. The solution is divided into
particular and complementary parts. Then. another version of the cut method is
used to handle both parts of the solution. Finally, by applying continuity conditions
at the junction of the two cylinders, the unknown stress and strain distributions

around the intersection curve can be solved for.

§7.1 Equilibrium and Compatibility of the Vessel Solution

The force and displacement vectors F and D represent the Fourier coefficients
of the force and displacement quantities acting on the boundary of the opening in
the vessel. These quantities are known to satisfy the requirements of equilibrium

and compatibility. As a result, it is expected that the four force stress resultants
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are related m order to satisfy the equilibrium of the cylinder. Similarly, one expects
the four strain and curvature measures to be related in a similar fashion. These
relations are very simple in the case of an opening in a flat plate. However, in the
case of an opening in a circular eylinder, these relations are difficult to visualize

because of the complicated geometry of the boundary.

For example, consider the first symmetry case corresponding to Isym = 1.
Figure 7.1 shows the stress resultants acting on the boundary of a circular flat plate,
which is the limiting case of a very small nozzle intersecting a vessel (d/D =~ 0).
For these stress resultants to satisfy the equilibrium of forces in the z-direction, the
axisymmetric transverse shear has to be zero. In terms of Fourier coefficients of the

transverse shear, this can be written as;

v =0 (7.1.1)

In addition, because there is no external twisting moment, the lowest harmonic of

the in-plane shear is;

N® =0 (7.1.2)

These two coefficients correspond to the second and fourth elements of F, and are
known to be zero. Consequently, all the elements in the second and fourth rows
in FM1 and FM2 are equal to zero. The existence of these null rows makes the
matrices singular. So in order to avoid the resulting numerical difficulties, both

the second and fourth rows are deleted from all the force vectors and matrices

F,,F,,FMI, and FM2.  +

The same principle can be extended to the case of the intersection curve in a
circular cylinder (Fig. 7.2). Unlike the case of a flat plate, all three forces acting
on the boundary V,,N,, and N,, contribute to the vertical equilibrium of the

shell. The contribution of these guantities can be evaluated by using the directional
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AZ

V.

Figure 7.1

Equilibrium of a circular plate with axisymmetric transverse shear V;
acting on the boundary. Other stress resultants do not contribute to
vertical equilibrium.

Figure 7.2

Equilibrium of a segment of the vessel surface. The three stress resul-
tants (V;, N,, N, ) contribute to vertical equilibrium in this case.
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cosines of the vectors Ay, A, and Ag (see §2.4). The total vertical resultant is
obtained by integrating the contribution of these stress resultants over the length

of the boundary. Therefore, the equation of equilibrium in the z-direction is:

2m 27 2

Vi cos -rody— N, sing¢siny-r,dy— Nyysingcosyrydy =0 (7.1.3)
0 0 0

Substituting the Fourier series expansion of the three stress resultants in (7.1.3)

yields
2 N1 N1
] Ty - [cos ¢ Z V™ cosny — sin ¢ siny Z N{™ cosny
a n=0,2, n=92,

(7.1.4)

N1
— sin ¢ cosy Z Nﬁ,’;) sinn’y}dq« =0
n=24,

As a result, it is possible to write the lowest harmonic of the transverse shear ,50)

in terms of all the other Fourier coefficients. Thus, Vi? can not be assumed to be

an unknown which justifies dropping it from all the force matrices and vectors.

The same principle can also be applied to the strain and curvature guantities
which have to satisfy the deformation compatibility requirements. This results in
the elimination of two of the Fourler coefficients for the displacement quantities

corresponding to n = 0.

In summary, it is necessary to delete the second and fourth rows of all the force
vectors and matrices F¢,F,, FM1, and FM2 which correspond to ,-(0) and N,ﬁ?,) .
Similarly, the first and third rows, corresponding to r(® and ngo) , are also deleted
from D,,D,, DM1, and DM2. As a result, the new arrangement for the Fourier

coefficients in a typical force or displacement vector is:



7. The Total Solution Including Nozzle Flexibility 91

[ M\ LA
cNi® e£,°’
M® Cr2)
F,= [ rovi? D,=ETC| Cx{’ (7.1.5)
CN& Croxt?
CN?), | eg?)

From now on, these new vectors will replace the old ones described in (5.2.9).

§7.2 Stiffness Matrix for the Opening in the Vessel

Both the cut method and the asymptotic solution will be used in this section
to evaluate the stiffness coefficients for the boundary of the opening in the vessel.
These stiffness coeflicients will be used to express the stress resultants along the

boundary in terms of the strains and curvatures.

A brief discussion of the stiffness matrix is also found in this section. It illus-
trates the different characteristics of different parts of the stiffness matrix in light
of the different methods used in the analysis, and the different response of the shell

for different harmonic indices.

7.2.1 Computation of the Stiffness Matrix

In Chapter 5, the cut method was used to handle the low harmonics of the
complementary solution, which correspond to the top few harmonics in F, and

D.. The results were expressed in the form
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F.=FM1xb
(7.2.1)
D.=DM1xb

In addition, the application of the asymptotic methods to the shallow shell equation
produced

F.=FM2xc
(7.2.2)
D.=DM2xc¢

By observing that (7.2.1) is for the low harmonics and that (7.2.2) is for the high

harmonics, both relations can be combined into

F.=FM x B
(7.2.3)
D.=DMxB

where FM and DM are square matrices which include the submatrices FM1,

FM2 and DM1, DM2 assembled next to each other in the following way

£ = [fena o)
DM = [[DMl] [DMQ]] (29

and B represents a vector of the combined unknown constants b; and ¢;.

B = { {{E}} } (7.2.5)

Multiplying (7.2.3-b) by DM~ yields

B=DM™ xD, (7.2.6)

which when substituted in (7.2.3-a) produces
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F.=K xD, (7.2.7)

where

K=FM xDM™! (7.2.8)

Thus, the square matrix K is the “stiffness” matrix for the opening since it relates
q pening

the force quantities to the displacement quantities.

7.2.2 Characteristics of the Stiffness Matrix

In Chapter 4 it was mentioned that the complexity of the problem stems from
the complicated manner in which the shells resist the external loads at the junction.
Consequently, this is inherited by the stiffness matrix of the vessel because it reflects
the response of the vessel to prescribed edge distortions. To understand this, it is
desirable to take a close look at the stiffness matrix K. Unfortunately, because of
its large size, it is not practical to present the individual coefficients in K. However,
by examining the global picture of K, a general idea about the coupling between

the harmonics can be given.

A typical stiffness matrix for the boundary of the opening in the vessel is shown
in Fig. 7.3. It can be observed that there is significant coupling between the lower
harmonics, which are located at the top left-hand corner. Of course, this behavior
is not surprising because the existence of such coupling was the main reason for
selecting the cut method to handle the low harmonics. However, by moving down
along the diagonal (increasing n), it can be observed that the level of coupling
between the harmonics is decaying. This is the range where the asymptotic solution
was used. In the bottom right-hand corner, which corresponds to the very high

harmonics, there is no significant coupling at all between the different harmonics.
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Figure 7.3

A Typical stiffness matrix K for the boundary of the opening in the
vessel indicating significant coupling between the low harmenics (top
left-hand corner), and no coupling between the high harmonics (lower
right-hand corner).
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This is indicative of flat-plate behavior which has been known to exist in shells of

revolution with a high harmonic index (see Steele; 1965).

For the boundary of a circular hole of radius ry in a flat plate, each harmonic
of the solution is completely independent of the other harmonics. Therefore, it is
possible to derive a 4 x 4 stiffness for the nth harmonic that relate the Fourier

coefficients of forces to displacements. This relationship can be expressed as

[ M ' 1+v 0 0 - (—ETCET(")\
roVii™ —n(l+v) —2n 0 0 ETC?6(M
ol A ) 0 0 —20/n  (~1+v)o| | BETCrexl™
\CN,™/ L 0 0 o1-w)n 2 |\ ETCAY
(7.2.8)

— 1
where g = T+nG—1)"
The flat plate stiffness matrix can be useful for the verification of the numerical

values of the computed stiffness coefficients in K for high values of n.

§7.3 Solution for the Nozzle

So far, the analysis has been confined to only one of the two cylinders that
compose the joint. The previous chapters illustrated the use of the cut method and
the application of the asymptotic methods to develop the particular and comple-
mentary parts of the solution for the vessel. Up to this point, the effect of the nozzle
has not been included. This limits the range of problems that can be handled to
the two limiting cases of a very rigid inclusion or a hole in the vessel. Actually,
some of the earlier investigators have elected to ignore the effect of the nozzle and

solve for these two limiting cases only.

However, in this study the contribution of the nozzle to the flexibility and

stresses of the joint will be included. This section provides a brief description of
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the nozzle analysis. The solution will be divided into particular and complementary
parts. The particular solution will be obtained by representing the applied load by
a set of membrane stresses that produce the same resultant. The complementary
solution will be used to generate stiffness coefficients for the boundary of the lower
edge of the nozzle. Both parts of the solution utilize the general solution for the
equations of a circular cylinder given mn §3.3 |, and are much easier to develop than

the particular and complementary solutions for the vessel.

7.3.1 The Governing Equations

Figure 7.4 shows a circular cylinder of radius rp and thickness ¢, which repre-
sents the unrolled nozzle before its lower edge is machined to fit on the vessel surface
(edge # 1). The figure also shows the shape of the lower edge of the nozzle when
it intersects a larger cylinder of radius R (edge # 2). The approach will utilize
solutions for the flat edge (# 1) of a complete cylinder to generate solutions along

the actual lower edge (# 2) of the intersecting nozzle.

The solution of the equations for a semi-infinite circular eylinder was discussed
in detail in Chapter 3. In general, those samne equations will be used for the analysis
of the nozzle, However, the coordinates and the dimensions of the nozzle should be
used here instead of those for the vessel. This implies that for the analysis of the
nozzle, the axis of the cylinder is z, the circumferential angle is @, ro is the radius,
t is the thickness, and E,, is the modulus of elasticity. As a result, the equivalent
of (3.3.6) for the nozzle is

(& -n?) —n?+ 28 =0 (7.3.1)

where ¢, the reduced thickness of the nozzle, is

c=1//12(1 — ?) (7.3.2)
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0 /2 T
Figure 7.4

Half of the unrolled nozzle with edge #1 representing the flat edge of
the cylinder before it is machined to fit the vessel. Edge #2 represents
the actual edge of the nozzle when it intersects the other cylinder.

By following the same procedure detailed in §3.3 , it can be shown that the

stresses and strains in the nozzle can be expressed in terms of the complex quantities

T),T3,Ty, and Ty. For the nozzle,

Ta(z,€) = (1 + 1c2)e® ¥/ 4 (g + icy)el?*/™ (7.3.3)

where £; and £; are the two roots of (7.3.1) which have positive real parts. The
remaining complex quantities 73,73, and T, can be expressed in terms of T; using

the same relations given in §3.3.

The next step is to develop relations that can be used to compute stresses and
strains along the intersection curve (edge # 2). This goal is achieved by using the
Mohr’s circle principle by following the same steps detailed in §4.4. The result is
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that the force vector for the nozzle f can be expressed as

(Mn\ /—U3+(1—u)U2\

T‘()Vn —U4 — (1 - IJ)U]_

f= = Re (7.3.4)

c¢Ny WUy

\ eN,., / \ —iUs(2) )

and the displacement vector

( —E,tc*? \ ( Us( 2 \
Ent62 J‘A\‘.», -—Uz
d = = Re (7.3.5)
EntC?"ofA‘ig Z[U4 + (1 + V)U]]
\ Entc, / \i[Us — (1 + 1))/

where

Ui = cosnf {(Tg - ‘;—T;g)(—-E sin o sin 2a + 21'_2 cos 2a ) + T ¢os a cos 2&}
Tg

T R .
—sinnd < (T, — -1-T3)(n cos o sin 2ad—a) + ~2(£ sina cos 2a + 2 sin 2a)
2 dry n Ty

Uz = [Tz cos? a + (Ts — Ty)sin® ] cosnf — % sin 2o sin nd
Uy = T3 cosnb
Uy = T3(£ cos a cosnf — nsinasinné)

1 T
Us = o [(Tg — —T3) cosnésin 2a + 2 sinné cos 205}
Tg 2 n

}

(7.3.6)
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7.3.2 The Particular Scolution for the Nozzle

In order to evaluate the particular solution for the nozzle, membrane stress
resultants need to be applied to the edges of the shell. These membrane stress
resultants have to produce the same resultant as the applied loads. The membrane
equations for the cylinder are represented by the special casesof n =0 and n =1
for the general equation for the cylinder (see §3.5). These solutions correspond to
the cases when the root of (7.3.1) is £ = 0, indicating that the solutions do not

decay along the axis of the cylinder.

For example, in the case of internal pressure p, the axisymmetric membrane

stress resultants in the nozzle are:

1
N, = —pr
2P0 (7.3.7)

Ng = pry

On the other hand, all the bending stresses and curvatures are known to be zero.

As a result, by using (3.3.11) it can be shown that

T]_ = T4 = RB(Tz) = RE(Tg) =0 (738)
and

Im(Tg) = —CNZ
(7.3.9)
Im(Ty — Ty) = —cNj

Substituting (7.3.7) in (7.3.9) yields

1
T2 = I“icpf'ﬂ’l:

3
T3 = wEcpr'gi

(7.3.10)
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Iload n N, Ny T T3
0 0 $Pro Pro -—%cprgi "%Cpf‘ui
1 0 g 0 ~gE ~gFL
2 1 %ﬂ; cos @ 0 —%{_‘? —%‘Ei
3 1 — ¥4 sin6 0 e =
Table 7.1

Membrane stress resultants in the nozzle and the corresponding com-

plex quantities T3 and T3, for use in the particular solution of the
nozzle.

These values are then substituted in (7.3.6) to evaluate the complex quantities Uy,

Uz, Uz, Uy, and Us in terms of the pressure p, and using;

n=>0 ,and ¢

0

At this stage, all the force and displacement quantities can be evaluated at
any point on the intersection curve by using (7.3.4) and (7.3.5). These can be
expressed as the sum of a finite Fourier series, the harmonics of which are stored in

the particular solution force and displacement vectors f, and d,, respectively (see
§5.2.2).

For the other loading cases, the same procedure is followed. The membrane

stresses N, and Ny are different for each case. Table 7.1 lists the appropriate
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stresses and the correspbnding values for T; and T3 in terms of the applied load.
The values of T3 and T are known to be zeros for all the loading configurations.
No particular solution for the nozzle is given in the case of an axial force on the
vessel ( Iload = 5) because in this case there is no external load being applied to

the nozzle itself.

7.3.3 The Complementary Solution for the Nozzle

The complementary solution for the nozzle will be evaluated using the same
equations that were used in the particular solution. This means that each harmonic
will be handled separately, which greatly reduces the amount of computation in-
volved. This is in contrast to the complementary solution for the vessel for which
the cut method was used. In that case, each single cut solution was expanded into
N harmonics and the contribution of each harmonic was summed up to produce

the complementary solution at a high cost in CPU time ( see §5.4).

To evaluate the complementary solution for a single harmonic n, four indepen-
dent solutions are used. Each of these solutions corresponds to one of the integration
constants ¢i,cz,¢c3, and ¢4 in (7.3.3). First, ¢; is set equal to unity while setting
the other three constants to zero. Using these constants, 71,7»,73 and Ty can be
determined, which are then substituted in (7.3.6) to produce the eight force and
displacement quantities on the intersection curve. The nonzero Fourier coeflicients
of these forces and displacements are stored in the first columns of the matrices fm

and dm, respectively.

The same procedure is repeated four times to cover the four corresponding
integration constants. After that, using the next lugher harmonic, the whole cycle
is repeated untill all the required harmonics are covered. The final result will be in

the form
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f.=fmxec
(7.3.11)
d.=dmxc

where ¢ is a vector that includes the constants ¢;,¢2,c3, and ¢4 for all the har-

monics.

The stiffness matrix for the nozzle can be computed by eliminating the unknown
vector ¢ from (7.3.11) using the same method that was applied to the vessel (see

§7.2.1). In the nozzle case, the relation is

£ =kxd, (7.3.12)

where the nozzle stiffness matrix is

k=fmxdm™ (7.3.13)

87.4 Transformation of Force and Displacement Quantities

Up to this stage, the analysis of each of the two cylinders was performed sep-
arately. However, the final analysis of the problem will involve combining the
equations for both cylinders. As a result, it is necessary to make the force and

displacement vectors for the vessel and the nozzle compatible.

For example, compare the elements of the force vector of the vessel F (4.4.1)
to the force vector for the nozzle f (7.3.4). By examining the directional vectors for
both shells (see §2.4), one can observe that the vector tangent to the boundary of
the opening in the vessel is the same as the tangent to the nozzle ( A, =& ). Asa
result, it can be concluded that the bending moment components in the nozzle My

and the vessel M, must be equal (see Fig. 7.5). Similarly, the two in-plane shears
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zA

nozzle

V,-~—4Y°

vegsel

Figure 7.5

Cross section of the junction along the transverse axis. The figure
illustrates the transformation of the nozzle shears V,, and N, to the
new quantities V' and N which are compatible with the vessel co-
ordinates.

N,y and Ny, are the same. On the other hand, the other two stress resultants in
the nozzle, V, and N,,, have different lines of action from those for the vessel, V,

and Nr..

In essence, the force quantities for the nozzle need to be transfered to a new
set of actions that have the same directions as the vessel force quantities. The new
force quantities for the nozzle, which will be distinguished by an asterisk, are related

to the original elements of f as follows;

M: =M,
N:L'y = N"T

(7.4.1)
V= —-V,sind — N,cosé

N, =~V,cos6 + N, siné

where § is the angle defined as
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siné = 111-51 (1.42)

= sin @ sin ¢
Using (7.4.1), the four force quantities in the nozzle force vector f can be trans-
formed into their new counterparts which are compatible with the vessel force quan-
tities. The new force quantities can then be arranged in the new force vector for
the nozzle,

(M)

n

ro V)
f* (7.4.3)

—"
"

CN*

\CN,.,
Note that some of the elements in f* are normalized in a different way from f
in (7.3.4). The two in-plane stress resultants are multiplied by the vessel reduced

thickness C instead of that for the nozzle ¢. This is essential to ensure that f* is

normalized 1n the exact way used for normalizing F'.

Using the static-geometric analogy, the strains and curvatures can also be trans-
formed in the same way. In this case, the new displacement quantities will be

normalized using E,T and C instead of E,,t, and c.

The final result will be the transformation of all the intermediate results for
the nozzle f.,d.,fy.d,, and k to £7,d;,f;,d}, and k* which are compatible with

those for the vessel.

§7.5 Continuity Conditions and the Final Solution

The previous work is finally reduced to a single equilibrium equation for each
of the two cylinders independently. For the vessel, assume that the unknown forces

and displacement vectors at the junction are F,, and D, . Using the definition of
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the complementary solution as the difference between the total solution and the

particular solution, (7.2.7) can be written as

(F, —F,) =K x (D, — D,) (7.5.1)

Similarly, the equation of the nozzle is

(£ —£) = k" x (df - d%) (7.5.2)

where f; and dj are the unknown forces and displacements in the nozzle, at the

junction.

The continuity of the structure at the junction of the two cylinders implies
that the stress resultants and strains are continuous between the two shells. As a
result, the unknown force and displacement vectors for the two cylinders are the

same, which gives

fr =F,
(7.5.3)
d; =D,
Substituting (7.5.3) in (7.5.2) yields
Fo=k"xd} -k*xd;+£; (7.5.4)
Eliminating F,, from (7.5.4) produces
(K-k")xD,=KxD, -k xd; + 1, ~F, (7.5.5)

The displacement vector D, , which is the only unknown in (7.5.5), can be easily

solved for. Then it can be substituted in (7.5.1) to evaluate the unknown force
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vector F,. Because F, and D, include Fourier coefficients, their elements have
to be back-transformed to produce the unknown force and displacement quantities

evaluated at the mesh points along the intersection curve.
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Chapter 8

Results and Comparisons

FAST3 is a new FORTRAN code for the analysis of cylinder-to-cylinder junc-
tions that incorporates the theoretical work discussed in the previous chapters. The
major parts of the code have been checked independently to insure their validity.
The cut solution and the asymptotic solution for the vessel, and the solution for the
nozzle, have been found to produce the expected results during the testing phase.
In addition, the complete code was tested using a variety of geometries and loading
configurations. Results showed excellent agreement with other published results

using htferent approaches.

In this chapter, the convergence and numerical stability of FAST3 are discussed.
The relationship between the size of the nozzle and the validity of the numerical
results is explained in light of the decay distance principle for shells. The chapter
also includes some of the comparisons performed between FAST3 results and those
obtained by other investigators. The final part of the chapter includes the analysis
of stresses at the junction of two cylinders with d/D > 0.5 . Some of these results
are used to complement existing design tables obtained using the Bessel functions

solution of the problem (FAST2).

§8.1 Convergence of the Solution

FAST3 was designed to handle a wide range of geometrical parameters ranging
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from nozzles which may be considered very small to those that are about as large as
the vessel. However, there is a limit for the validity of FAST3 that can be defined

as follows

0.05 < d/D < 0.90 (8.1.1)

D/T < 200

In certain cases, FAST3 can be used with geometries that do not fulfill the require-

ment of (8.1.1), but the accuracy of the solution for such cases is not guaranteed.

In general, the convergence of the solution for the junction problem was found
to be entirely dependent on the convergence of the solution for the vessel. The
convergence of the vessel solution can be measured by the sensitivity of the vessel
stiffiiess matrix K to small changes in the the total number of harmonics handled
by the cut method. Therefore, an investigation of the effect of NHC on the stability
of K is required.

8.1.1 Stability of the Cut Method

By reviewing the analysis of the vessel, one can observe that the parameter
NHC identifies the specific harmonic at which the use of the cut method is ter-
minated and the use of the asymptotic solution commences. Because NHC is an
arbitrary number to be specified by the user, the solution of the physical problem
should be insensitive , to some extent, to the prescribed value of NHC. As a re-
sult, to reach convergence the stiffness matrix K should not be greatly affected by
slightly changing the value of NHC'.

During this study, it was observed that for each problem there is an ideal range
of values of NHC to be used in the analysis. This range of values defines the
minimum number of cut solutions needed to obtain a converging solution. These

values are listed in Table 8.1 for different geometric parameters. For example, for
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the analysis of a model with d/D = 0.7 and D/T = 40, the convergence of the
results ia achieved at NHC = 3 or 4. Higher values for NHC makes the solution

more expensive in terms of CPU time and may lead to numerical instability.

DT d/D =05 d/D = 0.7 d/D =09
20 2-3 34 5-6
40 3-4 4-5 6
100 5-6 5-6 > 6
Table 8.1

Recommended values of the number of harmonics NHC to be han-
dled by the cut method in the analysis for different values of d/D and
D/T.

8.1.2 Nozzle Size Parameter

For an opening in a circular cylinder, there are two geometric parameters, the
diameter ratio d/D, and the diameter to thickness ratio D/T. However, several
investigators (Van Dyke; 1965, Steele and Steele; 1983) have concluded that the
behavior 15 mainly dependent on only a single parameter. This parameter is referred

to as the nozzle size parameter and defined as

A = d/V/DT (8.1.2)

* The significance of A is understood by comparing it to the decay distance for shells.

The decay distance for a shell, &, is defined as the distance from the boundary
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beyond which edge bending stresses and curvatures can be considered very small

(< 5%). For a circular cylinder of radius R and thickness T (see Fliigge; 1960)

64 = VRT (8.1.3)

Therefore, by examining (8.1.2) and (8.1.3) it can be deduced that the nozzle size
parameter A is proportional to the ratio of the nozzle diameter to the vessel decay

distance, which reflects the vessel response to the existence of the opening.

The nozzle size parameter is also useful for deciding whether a certain cylinder-
to-cylinder model is within the range of the validity of FAST3. In addition to (8.1.1),
the diameter to thickness ratio ( D/T') also contributes to the convergence of FAST3
solution. Using Table 8.1 and (8.1.2), it can be shown that the range of validity of
FASTS3 in terms of A is

022 < A < 9.0 (8.1.4)

£8.2 Computation of Stresses

The solution of (7.5.5) provides the distribution of the four stress resultants
acting on the bounda.ry of the opening M,,V,,N,, and N,,. In addition, the
solution also yields the distribution of the displacement quantities T, k., g, and
4. However, there is always interest in the values of the stress resultants in the

circumferential direction M, and N, which are yet to be determined.

The bending moment-curvature relationships are (see Ugural;1981)

M, = ETCE(H:,- + vEy) (8.2.1)

My = ETC*(ky + v&y) (8.2.2)
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Eliminating the unknown curvature &, from (8.2.2) produces

M, =vM, + (1 - v)ETC?x., (8.2.3)

Similarly, the tangential stress resultant is

Ny=vN,.+ (1 - v*)ETCe, (8.2.4)

In general, the most important stress resultants at the junction of two cylinders are
M,,N,,M,, and N,. The transverse shear V, and the in-plane shear N, usually
produce negligible stress levels compared to the other stress resultants. Therefore,
most of the results reported in this chapter will include the bending and membrane

stress resultants only.

The magnitude of these stress resultants can be easily understood if they are
normalized in terms of the applied load and the geometry of the junction. The same
method used by Mershon, et al. (1984}, Steele and Steele (1983) for normalizing the
stress resultants is applied here. Table 8.2 lists the appropriate normalized stress

resultants M,, N, M., and N, for each loading case.

In general, it desirable to present the bending and the membrane stress resul-
tants independently. The reason is that designers sometimes apply a different safety
factor to the bending resultant than that for the membrane resultants. However,
in some cases, the stresses at the outer and inner fibers of the vessel are also of
interest. These stresses, in the radial and tangential directions, can be determined

using

N, M,
N oM.
0--{ = "'1_.?‘ j: TZT (8-2.6)
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ILOAD!| Applied M, N, M, N,
load
0 P M, [pRT N./pR M,/pRT Ny/pR
1 P M,/P N,T/P M,/ P NoT/P
2 M, M,d/M, N.dT /My, Mpd/M,, NodT /My
3 Mc M, d/Mc N,dT/Mc Mad/Mc NodT /M
5 F, M,xD|F.T NyxD/F, MgnD/F.T N,xD/F,
Table 8.2
Normalized stress resultants in the vessel for the five different loading
configurations.

where + is used for the evaluation of the outer stresses, and — is used for the

inner stresses.

§8.3 Solution for Rigid Inclusions and Openings

It was mentioned in Chapter 1 that the early stages of research have been
confined to the himiting cases of a rigid inclusion or a hole in a circular cylinder.
These cases are of some importance because they resemble situations in which the
nozzle thickness to vessel thickness ratio (¢/T') is very large or very small. These
two limiting cases can actually be solved using the analysis discussed in §7.5. This
is possible by imagining the existence of a nozzle and adjusting its modulus of
elasticity to a very high or very low value to represent a rigid inclusion or an

opening. However, this approach is not the most efficient one because an analysis
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of the fictitious nozzle is performed which consumes additional computer time.
Therefore, an alternative approach which excludes the nozzle analysis is needed for

handling these two limiting cases.

In the case of a rigid inclusion in the surface of a circular cylinder, all the strain

and curvature quantities included in the displacement vector D are known to be

zero. As a result, at the boundary between the rigid inclusion and the cylinder;

D, = 0 (8.3.1)

Using (7.5.1), it can be shown that

F,=F,—-KxD, (8.3.2)

which yields the values of the stress resultants at the boundary.

In the case of a hole in a cylinder, the boundary of the hole is known to be free

of tractions. Thus, the substitution of ¥y, = 0 in (7.5.1) yields

D,=D,-K'xD, | (8.3.3)

Because of the absence of the radial stresses along the boundary, tangential stresses

at the boundary can be evaluated using (8.2.3) and (8.2.4).

§8.4 Effect of the Vessel Length

In this section, the effect of the vessel length L on the stress field will be
discussed. This effect can range from completely insignificant to very significant

depending on the loading configurations.
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It was stated in §2.1 that the vessel is assumed to be long enough to justify ne-
glecting any coupling between the stresses at the joint and the vessel ends. However,

in certain cases if the vessel is too long, the results may be slightly misleading,.

For example, in the case of a radial load on the nozzle (Iload=1) if L is too
large, the stresses at midspan due to the beam bending behavior of the vessel can
be of the same order of magnitude as the stresses due to the existence of the nozzle.
As a result, the vessel length is considered to be very significant for the radial load

case.

A vessel length parameter which relates the vessel length to the decay distance
was used by Steele and Steele (1983) to understand the effect of the vessel length.

Its principle is similar to the nozzle size parameter (see §8.1.2) and can be defined

as

A= L/VDT (8.4.1)

Steele and Steele also indicated that the beam bending effect can be neglected

when the vessel length parameter A is less than a critical value A., defined as;

A, = {D/T,- for Iload= 1; (8.4.2)

(D/T)?, for Iload= 3.
Results obtained using FAST3 indicate that this criterion is valid for models with
d/D > 0.5 .

§8.5 Testing FAST3

The computer code FAST3 has gone through an extensive testing program
to verify its validity. FAST3 results have been compared to a large set of results
obtained by several investigators. These included results evaluated through differ-

ent analytical, experimental, and finite element analysis. The testing procedure
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also covered a wide range of geometrical parameters and loading configurations.
Unfortunately, most of the results available in the literature are for models with
d/D < 0.5 . As aresult, it was not possible to do an extensive checking for models
with larger nozzles. This section provides a summary of some of the comparisons

between FAST3 and results from other approaches.

8.5.1 Comparison with Analytical Results

First, to test the validity of the vessel solution, an analysis of a circular cylinder
with a circular hole was performed. Van Dyke (1965) solved this problem for the
pressure and axial tension loadings. He used Hankel function solutions of the shallow
shell equations to evaluate the bending and membrane stresses in the circumferen-
tial direction as a function of the opening size parameter A. For the purpose of
comparison, four different sizes of the opening in a cylinder (D/T = 100) were

used. The sizes of the opening for the four models are

d/D =01, 02, 0.3, and0.4

Using (8.1.2), it can be shown that the values of A for the four models are 1.0, 2.0,
3.0, and 4.

Comparison between the membrane stress resultant N., at § = 0° and 90°,
computed by Van Dyke and FAST3 is given in Figs. 8.1 and 8.2. Figure 8.1 includes
the results for internal pressure loading, while Fig. 8.2 is for the axial tension loading
on the cylinder. FAST3 results for both cases have been computed using (8.3.3),

and the agreement with Van Dyke’s results for all models 1s good.

The next step was to test FAST3 using cylinder-to-cylinder junctions to verify
the solution of the nozzle discussed in Chapter 7, and the continuity conditions

between the two cylinders.

Eringen, et al {1969), used an mnfinite series solution of Donnell’s equations
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N‘T sensssesneas Van Dyke (3 = 00)
"" —————— Van Dyke (6 = 90°)
o o  FAST3(0=0°)
D FAST3 (6 = 90°)
c ......... skt i
g
SO ST WODRTOTE
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Figure 8.2

Tangential stress concentration factors at § = 0° and @ = 90°, for
an opening in a cylinder subjected to axial tension. Lines represent
results obtained by Van Dyke (1965). Points represent FAST3 results

using four different hole sizes (d/D = 0.1, 0.2, 0.3, 0.4) in a circular
cylinder (D/T=100).



8. Results and Comparisons 118

to compute the stresses in cylinder-to-cylinder joints with d/D < 0.33 subject to
internal pressure. Stress concentration factors for several models were published
in Welding Research Council Bulletin No. 199 (WRC-139). Three models with
different d/t ratios were selected for the purpose of comparison with FAST3. The

geometries of these three models are as follows;

D/T =25 , d/D = 0.25,

d/t = 12.5, 25.0, and 50.0 .

A comparison between the tangential stress resultant in the vessel N, computed

by Eringen, et al., FAST2, and FAST3 is given in Table 8.3. The agreement is fair.

The next step was to compare FAST3 results to the data available in Welding
Research Council Bulletin No. 279. Based on the numerical results from FAST2,
WRC-297 was developed by Mershon, et al. (1984) for design utilization. It in-
cludes results for three different loading cases, but results will be presented for the
longitudinal moment case only ( Iload = 2). Four different models with small nozzle
sizes and a thickness ratio T/t = 2, are used for the comparison. The normalized
tangential moment M, for the four models , including the Kmiting cases of a very
rigid and very flexible nozzle, are plotted in Figure 8.3 next to WRC-297 results.
The tangential membrane resultant N, is given in Fig. 8.4. The agreement be-
tween FAST3 and WRC-297 is very good for the four geometries including the two

limiting, cases of the nozzle rigidity.

8.5.2 Comparison with Experimental Results

In addition to other analytical approaches, FAST3 results can be compared to
experiments. Although the agreement 1s 1ot as good as it was with the analytical re-
sults, FAST3 results are very close to those obtained by strain gauge measurements,

given the difficulty of manufacturing and testing thin shell models.
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Figure 8.3

Normalized bending stress resultant in the tangential direction (M., )
due to an external longitudinal moment on the nozzle for differ-
ent geometries. Points represent FAST3 results for a rigid inclusion
(T/t=0), cylinder-to-cylinder models (T'/¢t=2), and an opening in the
vessel (T'/t = o0). Lines represent results from WRC-297 (Mershon,
et al.; 1984) for T'/t= 0, 2, and 10.
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Figure 8.4

Normalized membrane stress resultant in the tangential direction (N.,)
due to an external longitudinal moment on the nozzle for differ-
ent geometries. Points represent FAST3 results for a rigid inclusion
(T'/t=0), cylinder-to-cylinder models (T'/t=2), and an opening in the
vessel (T'/t = co). Lines represent results from WRC-297 (Mershon,
et al.; 1984) for T'/t= 0, 2, and 10.
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8=0° ¢ = 90°
Geometry WRC-139| FAST2 | FAST3 WRC-139| FAST2 | FAST3
dft =12.5 2.70 2.03 2.60 0.30 0.76 0.58
dft = 25.0 3.50 2.84 3.21 0.40 0.60 0.62
dft = 50.0 4.00 3.51 3.54 0.40 0.48 0.62
Table 8.3

Comparison of tangential stress concentration factors in the vessel
due to internal pressure, computed by WRC-139, FAST2, and FAST3
(DJT =25, d/D = 0.25).

First, stress distributions at the junction of two cylinders computed by FAST3
were compared to similar stress distributions measured experimentally by Riley

(1965). The dimensions of the tested model are as follows:

D =240in, T=.104in., d=12.01in., t = .102 in.

Riley reported the distribution of the radial and circumferential stresses in the
outer fibers of the vessel around the junction for different loading configurations.
Figure 8.5 compares FAST3 results to the strain gauge measurements when the
nozzle is subjected to a longitudinal moment. Stress distributions for the same
case computed using FAST2 (Steele, and Steele; 1983) are also plotted in the same
ﬁgme.

By examining Fig. 8.5, it can be observed that the peak stresses, which are
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Figure 8.5

Distribution of radial stress in the outer fibers of a cylinder-to-cylinder
model { D= 24.0 in., T= .104 in., d= 12.0 in., 1= .102 in.) subjected
to an in-plane moment on the nozzle (M = 18 Kip-in.). Comparison
is between strain gauge measurements by Riely(1965) and numerical
results using FAST2 (Steele and Steele; 1983) and FAST3.



8. Results and Comparisons

123

o Experimental D
O wandsfanavrvan FASTz ______
— N ————FasT3 G
k)
X
n
]
£ L r
m
I
3
R
( | * L
20 40 60 8O  6(deg)

Figure 8.6

Distribution of radial stress in the outer fibers of a cylinder-to-cylinder
model ( D= 24.0 in., T= .104 in., d= 12.0 in., = .102 in.) subjected
to an out-of-plane moment on the nozzle (M¢ = 18 Kip-in.). Com-
parison is between strain gauge measurements by Riely(1965) and
numerical results using FAST2 (Steele and Steele; 1983) and FASTS3.
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Method M, N, }\TL, N.,
Experimental .039 046 016 .19
FAST2 033 015 014 A7
FAST3 .029 .020 .016 167
Table 8.4

Normalized stress resultants in the vessel for model ORNL-1 subjected
to an in-plane moment ( JIload = 2). Results evaluated experimentally
by Gwaltney, et al. (1976), and numerically using FAST2 and FAST3.

Method M, N, M—, N.,
Experimental 120 .10 .07 .25
FAST2 138 052 076 132
FAST3 114 067 067 153
Table 8.5

Normalized stress resultants in the vessel for model ORNL-1 subjected
to an out-of-plane moment (Iload = 3). Results evaluated experimen-

tally by Gwaltney, et al. (1976), and numerically using FAST2 and
FASTS.
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located at @ ~~ 60°, are the same for the three different distributions. However, the
stress level at @ = 0° reported by Riley is significantly lower than that computed
by FAST3 and FAST2. The reason for this discrepancy is not understood. The
geometry is at the limit of the “safe” range of FAST2, and the end stiffness constraint
is not included in FAST3. This specific problem deserves further attention.

On the other hand, more satisfactory results for the same model are obtained
for the circumferential moment loading case. Peak stresses, as well as the stress
distributions, in the radial and tangential directions evaluated experimentally and
using FAST3 show excellent agreement (see Fig. 8.6).

Another careful experiment was performed at the Oak Ridge National Labo-
ratory by Gwaltney, et al. (1976), using four different cylinder-to-cylinder models.
Two of these models had a diameter ratio d/D= .129, and the third d/D =1.0.
The dimensions of the fourth model (ORNL-1) are;

D =10.0in.,, d= 5.0in.,, T =0.10in., t= 0.05in.

This model was selected for testing FAST3 because its geometry is within the range
covered by FAST3 The other three models diameter ratio are either too small or

too large.

Normalized stress resultants for model ORNL-1 when the nozzle is loaded with
a longitudinal moment, evaluated experimentally and numerically using FAST2 and
FASTS3, are given in Table 8.4. In addition, Table 8.5 includes the normalized stress
resultant for the same model when subjected to an out-of-plane moment. In both

loading cases, the agreement between the experimental and numerical results is

considered good for a relatively thin model (D/T = 100).

More recently, Khan and Woods (1984) presented a comparative study of the
stress distribution at the junction of two cylinders using experimental measure-

ments and finite element analysis. Two models with identical geometries (d/D =
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Isym =2 Isym =3
Method Ty oo Or oo
Experimental 7.2 5.3 18.5 10.0
Finite Element 8.5 5.2 22.0 10.5
FAST3 7.0 4.7 24.0 9.5
Table 8.6

Stress concentration factors in the radial and tangential directions in
a cylinder-to-cylinder model (d/D = 0.68, D/T = 23.7, d/t = 19.05).
FASTS3 results are compared to experimental and finite element anal-
ysis results reported by Khan and Woods (1984) for the in-plane and
out-of-plane moment loadings.

0.68, D/T = 23 7,d/t = 19.05) were used. One of the models was reinforced at
the junction while the other had no such reinforcement. Stress concentration fac-
tors evaluated experimentally and using finite element analysis for the unreinforced
model are listed in Table 8.6, for the in-plane and out-of-plane moment loadings.
By examining Table 8.6, the excellent agreement between FAST3 results and the

experimental and finite element results, for both loading cases, is evident.

§8.6 Results for Large Diameter Ratios

The previous few sections of this chapter illustrated the validity of FAST3
results for a variety of geometrical and loading parameters. The next step involves

the use of FAST3 to investigate the stress fields at the junction of cylinder-to-
cylinder models with d/D > 0.5 .
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8.6.1 Development of Design Tables

The Welding Research Council Bulletin No. 297( see Mershon, et al.; 1984) is
used for the evaluation of stresses at the junction of two cylinders. The WRC-297
provides the four principal stress resultants in the vessel M,., N,, M., N, for a
very wide range of geometrical parameters, but limited to d/D < 0.5 . As a result,
it 1s desirable to utilize FAST3 for the development of a new set of tables that
complement the results presented in WRC-297, for d/D > 0.5 .

For each loading case, WRC-297 provides results for different models by keeping
d/t and T/t constant and varying the nozzle size parameter A. For consistency,
the same scheme will be used for the application of FAST3. The values of the

geometrical parameters used for the development of these tables are;

d/t =20, 30, 50, 100, 200

T/t = 0.5, 1.0, 2.0, 5.0, 10.0
A = d/VDT ; evaluated at intervals of 0.5
A=L/VDT = 20.0

with the following limitations

0.45 <d/D < 0.90

20 <D/T < 200

These geometries were used for each of the five important loading cases included
in this study, internal pressure, radial load on the nozzle, in-plane moment on
the nozzle, out-of-plane moment on the nozzle, and axial force on the vessel. For
each model, and every loading case, the maximum values of the normalized stress
resultants in the vessel ( M, , Ny, M., N, ) are listed in Appendix A. The position of

the maximum stress in the vessel is different for different loading cases. For example,
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in the case of internal pressure ( Iload = 0), maximum stress is located along the
longitudinal axis, but in the case of an axial force on the vessel ({load = §), the

maximuin stress is located along the transverse axis.

8.6.2 Distribution of Stresses

The previous section and Appendix A provide the designer with maximum
values of the stress resultants at the junction of two cylinders. Although this is
generally considered the most important piece of information, sometimes it is useful
to examnine the distribution of stresses around the junction and how this distribution

changes as d/D increases.

To investigate this, five different models are used for comparison. The dimen-
sions of the vessel in the five models are the same ( D= 20 in., T= 0.5 in.), and
the nozzle thickness is also the same (¢= 0.5 in.). The nozzle diameter for the five
models are d= 10, 12, 14, 16, and 18 inuches.

First, these five models were inveétigated for the in-plane moment loading case
(Iload = 2). The distributions of the radial stress in the outside surface of the
vessel along the intersection curve are plotted in Figure 8.7. By examining Figure
8.7, it can be observed that the level of the stress drops as the diameter ratio (d/D)
increases. One can also observe that the position of the peak stress shifts away from
the longitudinal axis for larger values of d/D. For very small values of d/D, the
peak stress is known to be located along the longitudinal axis (8 = 0°). According
to Fig. 8.7, the peak stress shifts to # = 40° for d/{D=0.5, and is located at 6 = 77°
for d/D=10.9.

The previous analysis of these five models was repeated again using the out-of-
plane moment loading case ( Iload = 3), and the results are plotted in Figure 8.8. A
comparison of Figures 8.7 and 8.8 reveals that for the same geometry, the stress level
produced by an out-of-plane moment is at least twice as high as that produced by

an in-plane moment of the same magnitude. This underlines the significance of the
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out-of-plane moment loading case and the high stresses that are usually associated
with it. Also, unlike the in-plane moment loading, the position of the maximum

stress in the vessel is stationary and is always located along the transverse axis for

the out-of-plane moment loading,.
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Chapter 9

Conclusions and Recommendations

The previous chapters include the basis for the development of FAST3, a com-
puter code for the analysis of stress distributions at the junction of two normally

intersecting cylinders.

It was mentioned in Chapter 1 that during the development of FAST3, emphasis
was directed towards minimizing the required user set-up time. This was achieved
by the utilization of the exact thin shell equations in the analysis. The philosophy
was to treat each of the two intersecting cylinders as a very large finite element.
Each of the two “elements” has its own stiffness matrix at thé junction. This is in
contrast to the standard Finite Element Method, in which a very large number of
elements are needed for the analysis. The process of mesh selection and generation,
which could be a very painstaking process in FEM, is not required for the use of
FASTS3. As a result, only two to three minutes of user set-up time are needed for

each run.

In addition, FAST3 is relatively inexpensive in terms of CPU time. Depending
on the geometry of the model, each run requires about one to four minutes of CPU
on a DEC-20 system. However, huge savings in CPU time can be achieved through

the careful choice of the number of cut solutions to be included in the analysis (see

Table 8.1).

The main obstacle during this study was the development of an approach that
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can be used to generate stiffness coefficients for the boundary of large openings in
the cylinder. It was discussed in Chapter 1 that some stiffness coefficients have
been obtained in the past for small openings using shallow shell theory and Bessel
functions. However, the development of a closed-form solution for openings that
extend into the steep part of the shell is still a formidable task. This is the reason
for considering the cut method a breakthrough in this field, despite its shortcomings.
Additional work is needed to improve the cut method and reduce the large number
of iterations needed to transfer solutions from the flat edge of the cylinder to the

boundary of the opening.

In Chapter 6, the asymptotic solution of the shallow shell equations was found
to be a very useful technique for handling the rapidly varying part of the solution.
The approach is relatively simple and very inexpensive in terms of CPU time.
Results indicated that the stiffness coefficients for high harmonics generated using
the asymptotic solution are identical to these for a flat plate. The accuracy and
simplicity of the asymptotic solution makes it the ideal complement to the cut
method. 7

Some of the examples used to test the validity of FAST3 were presented in
Chapter 8. These represent a subset of a large number of examples and experi-
ments that have been investigated by other researchers. All the comparisons were
found to have reasonable agreement over a wide range of geometries and for all
the loading configurations included in this study. In certain cases, the agreement
with experimental results was not very good. This could be attributed to several
reasons. One of these reasons is the difficulty of manufacturing and testing very
thin shell models. Slight imperfections in the wall thickness could introduce signifi-
cant errors. Also, because FAST3 assumes that the junction is free of any welds or
reinforcement, the existence of fillet welds between the two cylinders in the tested

models may have contributed to the discrepancies in the results.

Finally, the development and use of FAST3 showed that the following conclu-
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sions can be made :

1) The cut method is a useful numerical approach for the evaluation of the
stiffness coefficients for the boundary of a large opening in a cylindrical shell.

2) The asymptotic solution of the shallow shell equations is a useful alternative

to the cut method for handling the high harmonics of the solutions.

3) FAST3, which incorporates the cut method, the asymptotic solution, the
nozzle solution and the continuity conditions, is a useful tool for the investigation

of stress distributions at the junction of two cylinders with a diameter ratio .05 <

d/D <0.90 .

4) The shallow shell solution for the problem (FAST2) developed by Steele and
Steele (1983), which was designed to be valid only for d/D < 0.5, is not seriously
in error for 0.5 < d/D < 0.7 .

5) The effect of the vessel length L on the stresses observed by other investi-

gators for d/D < 0.5, can be generalized to models with larger diameter ratios.

The following recommendations for future work can also be given:

1) To improve the cut method by reducing the amount of computation needed

for each harmonic. It is also desirable to extend the range of validity of the approach
to d/D>09 .

2} Additional investigation of the suitability of the cut methed for handling
openings of other shapes is needed. This may prove to be useful for studying
junctions in which the nozzle intersects the vessel at an oblique angle. In addition,

this might be extended to include the effect of neighboring nozzles on the stress

field.

3) Additional features need to be added to FASTS to improve its versatility.
This includes the ability to handle models which have reinforcement at the junction

or in which the nozzle intersects the vesse] at a position close to the supports.
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4) The buckling loads and the dynamic behavior of cylinder-to-cylinder june-
tions is another field to be investigated. FAST3 can be improved to handle such
tasks by adding appropriate terms to the equations for the circular cylinder dis-
cussed in Chapter 3.
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ABSTRACT

Evaluation of stresses at the junction of two normally intersecting cylinders
is an essential part of .the design of pressure vessels and similar structures. In
general, most of the previous analytical solutions of this problem have been limited
to structures in which the ratio of the diameter of the intersecting pipe (nozzle) to
the diameter of the intersected pipe (vessel) is less than one half. The objective of
this work is the development of the computer code “FAST3” which can also handle

larger diameter ratios.

The stress and strain distributions around the junction are expressed in the form
of a Fourier series. An approach referred to as “the cut method” was developed
and is utilized to generate stiffness coefficients for the low harmonics of the vessel
solution. A circumferential cut in the vessel surface, inside the region covered by
the nozzle, is used to prescribe discontinuities of forces and displacements. These
discontinuities are used in conjunction with the solution of Sanders’ equations for a
circular cylinder to develop solutions at the boundary of the opening. For the higher
harmonics, stiffness coefficients are computed using an asymptotic solution of the
shallow shell equations. The combination of the cut method and the asymptotic
method is shown to be useful for investigating cylindrical shells with a rigid inclusion

or a hole.

Another approach is used to develop stiffness coefficients for the boundary of
the nozzle. The vessel and nozzle solutions are incorporated in FAST3 with the
appropriate continuity conditions between the two cylinders. Results indicate good

agreement with the work of other investigators using experimental and numerical

v



techniques for several cylinder-to-cylinder models subjected to five different loading
configurations. The code was used to develop tables of stress concentration factors

to complement those published by the Welding Research Council.
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ABSTRACT

Evaluation of stresses at the junction of two normally intersecting cylinders
is an essential part of .the design of pressure vessels and similar structures. In
general, most of the previous analytical solutions of this problem have been limited
to structures in which the ratio of the diameter of the intersecting pipe (nozzle) to
the diameter of the intersected pipe (vessel) is less than one half. The objective of
this work is the development of the computer code “FAST3” which can also handle

larger diameter ratios.

The stress and strain distributions around the junction are expressed in the form
of a Fourier series. An approach referred to as “the cut method” was developed
and is utilized to generate stiffness coefficients for the low harmonics of the vessel
solution. A circumferential cut in the vessel surface, inside the region covered by
the nozzle, is used to prescribe discontinuities of forces and displacements. These
discontinuities are used in conjunction with the solution of Sanders’ equations for a
circular cylinder to develop solutions at the boundary of the opening. For the higher
harmonics, stiffness coefficients are computed using an asymptotic solution of the
shallow shell equations. The combination of the cut method and the asymptotic
method is shown to be useful for investigating cylindrical shells with a rigid inclusion

or a hole.

Another approach is used to develop stiffness coefficients for the boundary of
the nozzle. The vessel and nozzle solutions are incorporated in FAST3 with the
appropriate continuity conditions between the two cylinders. Results indicate good

agreement with the work of other investigators using experimental and numerical

v



techniques for several cylinder-to-cylinder models subjected to five different loading
configurations. The code was used to develop tables of stress concentration factors

to complement those published by the Welding Research Council.
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Chapter 1

Introduction

The cylindrical shell 1s a common structural component in nuclear, hydro-
electric, and fossil fuel power plants, in offshore oil platforms, and in many other
applications which require pipes and pressure vessels. It is frequently necessary to
join one cylindrical shell to another, or to have openings and areas of reinforcement
on the surface of the shell, which usually produce localized areas of high stress con-
centration (see Fig. 1.1). Due to the importance of such structures, there is a great
need for a reliable, efficient analysis procedure in order to reduce the probabilities
of failure. Despite that, reliable studies of the elastic stresses at the junction of two
cylinders have been rare, even for the idealized problem of two cylinders with no fil-
let or reinforcement. Those methods that are available do not completely cover the
wide range of geometrical parameters or the variety of loading configurations that
exist in actual structures. Analytical solutions have generally been difficult to ob-
tain because of the complicated geometry. Unlike perpendicular cylinder-to-sphere

junctions, this problem does not possess rotational symmetry.

The Pressure Vessel Research Committee of the Welding Research Counail
and other organizations with interest in pressure vessels have embarked on an ex-
tensive experimental and analytical investigation program of the cylindrical shell
intersection problem. Most of the theoretical work 1s related to idealized cylinder-

to-cylinder junctions (see Fig. 1.2). In this case, the vessel (intersected cylinder)
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Figure 1.1

A cluster of pipes intersecting a larger pipe from different directions.
This 1s a very common structural component in pressure vessels and
offshore structures.

Figure 1.2

_Idealized cylinder-to-cylinder junction frequently used in analytical
mvestigations.
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has a diameter D, and the nozzle (intersecting cylinder) has a diameter d. Unfortu-
nately, the majority of the analytical solutions for this problem have been confined
to cases where the nozzle is considered small relative to the vessel (d/D < 0.5). As
a result, there is a demand for an analytical approach that is useful for handling
cases with d/D > 0.5 . The development of such a solution is the objective of this

study.

§1.1 Literature Review

The early stages of research on the cylindrical shell intersection problem have
been confined to cases in which the ratio of the diameter of the intersecting cylinder
to the diameter of the intersected cylinder (d/D) is small. The reason is that for
small values of d/D, it is possible to make certain approximations for the geometry
of the intersection curve. In addition, because in the cases of small d/D the opening
is located in a zone of the cylinder which is almost flat, referred to as the “shallow

region”, the use of shallow shell theory is justified.

1.1.1 Small Openings and Rigid Inclusions

One of the first to investigate this problemm was Lufe (1947). He studied the
stress field near a circular opening in a cylinder subject to uniform axial tension or
internal pressure. Using perturbation techniques, Lufe expressed solutions in the
form of power series in terms of a dimensionless hole size parameter that relates the
size of the opening to the radius and thickness of the cylinder. The solution is valid
for very small values of the hole size parameter. Following the same procedure, Van
Dyke (1965} solved the same problem using an infinite series of Hankel functions
of the first kind as a general solution. His approach was designed to be valid for
slightly larger hole sizes. Boundary conditions at the opening were satisfied by using
a collocation method, which led to a truncation of the series. In addition to the

previous two loadings, his work also included the solution for torsion of the cylinder.
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Solution for a rigid inclusion in a circular cylinder is important because it serves
as a limiting case for a very thick nozzle intersecting a cylinder. Van Dyke (1967)
solved the problem using an approach similar to his earlier work for the opening.
Influence coefficients were used to satisfy the boundary conditions at the inclusion
boundary. Bonde and Rao (1978) studied the problem of a pressurized cylinder
with a rigid inclusion. Their solution was also in the form of Hankel functions.
Unlike Van Dyke’s solution which was written in terms of the displacements of the
midsurface, Bonde and Rao used strain and curvature change measures to satisfy
boundary conditions. Membrane and bending stresses were plotted versus the hole
size parameter. The results exhibit an asymptotic behavior which is in contradiction

to that obtained by Van Dyke.

Using an approximate estimate of the stresses in the vessel due to external
loads applied to the nozzle, Wichman, et al. (1965) developed design curves for
the Welding Research Council Bulletin 107. Their work is based on the analytical
solution of Bijlaard (1955). He replaced the external loads by pressure distributions
applied to rectangular patches on the cylinder face. A double Fourier series expan-
sion was used to compute stresses at specific points in the vessel due to the applied
loads. Although this approach is rather crude, and sometimes produces inaccurate
results, it was one of the most commonly used design procedures because of its

simplicity.

Wong, et al. (1985) used the same double Fourier series solution developed
by Bijlaard to expand the range of problems that can be handied. Their work is
supposed to be valid for large nozzles, interaction between neighboring nozzles, and
rectangular nozzles. Instead of applying the surface pressure to a single rectangular
area, the surface inside the intersection curve is divided into several rectangular
and triangular elements. As the number of elements was increased, the solution

converged to Bijlaard’s solution.
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1.1.2 Small-Nozzle Problems

Several investigators studied the problem of a small nozzle intersecting the
main cylinder. Reidelbach (1961) attempted to solve the problem by providing a
Fourier series expansion for the solution of the approximate Donnell thin shell equa-
tions. The harmonics of the Fourier series solution for the opening were assumed
to be uncoupled. This assumption is essentially equivalent to the treatment of the
intersected cylinder as a flat plate. Van Campen (1969) developed a triangular ring
element to solve for stresses at nozzle-to-flat plate intersections. His solution was
intended to serve as an approximation for cylinder-to-cylinder intersections with a

diameter ratio d/D < 1/4.

Lekkerkerker (1965) used the assumption that the edge of the nozzle is flat to
solve for stresses in problems with small diameter ratios. Instead of using Donnell’s
equations, the more accurate Flugge’s equations for a flat-ended cylinder were used
to evaluate influence coefficients for the nozzle edge. Similarly, influence coefficients
for the opening in the vessel were developed using a combination of exponential and

Bessel function solutions of the shallow skell equations.

During the same period, Eringen and Suhubi (1965) worked out a mathemat-
ical formulation for the problem of a cylinder-to-cylinder junction (d/D < 0.3)
subjected to internal pressure. In their subsequent work (1969), numerical results

for several models with a wide range of geometrical parameters were published.

Riley (1965) performed an experiment on a very thin model with diameter ratio
of 0.5 subjected to internal pressure, radial load, in-plane and out-of-plane moments
applied to the nozzle. Distribution of elastic stresses around the junction for all the
loading cases were provided. Pan and Beckett (1970) used the same geometry to test
their numerical approach to the solution using a collocation technique and the Least
Squares method. Their solution was not stable numerically and was very sensitive

‘to the position of the collocation points on the intersection curve. Reasonable

agreement with the experimental results was obtained only by restricting all the
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Table A-1
Normalized stress resultants in the vessel due to an external radial
load P on the nozzle (maximum stress is on the transverse axis).

Appendix A

Hoad =1 , dft =20 , T/t =05
A d}D M, N, My Np
4.5 306 .082 038 025 039
5.0 625 .068 041 .021 .043
5.5 756 059 .050 .019 057
6.0 .900 .056 072 021 079
Hoad =1 ,d/t =20 , T/t =1.0
A d/D M, N, M, Ny
3.0 450 077 057 029 068
3.5 612 058 064 022 091
4.0 .800 046 .108 .020 188
INoad =1 ,dft =30 , T/t =0.5
A d/D M, N, My Ny
5.5 604 076 029 .023 036
6.0 .600 .066 030 020 .038
6.5 7104 057 032 .018 044
7.0 817 054 037 017 053
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Appendix A
Iload =1 ,djt =30 , T/t =10
A d/D M, N, My Ny
4.0 033 063 042 .023 .051
4.5 675 .049 048 018 075
5.0 833 .042 079 .018 135
Ilopad =1 , dft =30 , T/t =20
) /D M, N, 7 N,
2.5 417 044 057 .036 145
3.0 .600 032 067 024 .186
Iload =1 , dft =50 , T/t =0.5
A d/D M, N, My Ny
7.0 490 070 021 .021 040
7.5 563 .064 021 .019 047
8.0 .640 056 021 017 050
8.5 722 047 024 014 053
Iload =1 , d/t =50 , T/t =1.0
A d/D M, N, M, Ng
5.0 .000 062 028 .022 040
5.5 605 .051 029 .018 050
6.0 720 043 033 016 068
6.5 845 0383 046 .106 086
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Appendix A
Iload =1 , dft =50 , Tft =20
A d/D - M, N, My Ng
3.5 480 038 .039 028 097
4.0 .640 .028 .044 020 A17
4.5 .810 .022 069 015 207
Iload =1 , d/t =100 , T/t =1.0
A d/D M, N, M, Ny
7.0 .4580 .058 .018 020 .059
7.5 .563 053 019 018 074
8.0 640 .050 .019 018 .096
8.5 722 047 017 .018 .165
Iload =1 , dft = 100 , T/t =20
A d/D M, N, M, Ny
5.0 500 .035 .023 022 .063
5.5 .605 .028 .024 017 076
6.0 120 .023 026 014 091
6.5 .845 .019 .034 010 110
Iload =1 , d/t =100 , T/t =5.0
A d/D M, N, My Neg
3.0 450 .0091 026 037 200
3.5 612 0074 034 .028 206
4.0 .800 .0052 .046 014 .308
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Appendix A
Iload =1 ,djt =200 T/t =20
X d/D M, N, My Ny
7.0 490 035 .015 .018 .086
7.5 563 .031 015 016 096
8.0 .640 .029 .015 016 124
Iload =1 , dft = 200 , T/t =5.0
4.5 506 0077 .015 .028 096
5.0 625 .0056 .014 .019 076
3.5 756 0043 015 .012 104
6.0 .900 0052 036 034 185
Tload =1 ,dft =200 , T/t =100
X /D M, N, My Ne
3.0 450 0021 017 035 230
3.5 612 .0016 .019 .030 204
4.0 200 .0011 .026 .018 311
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Table A-2
Normalized stress resultants in the vessel due to an external longitu-
dinal moment M on the nozzle (maximum stress is off-axis).

Hoad =2 ,dft =20 ,T/t =05

) d/D M, N, M; Ns

45 506 055 032 017 070
5.0 625 048 043 016 062
5.5 756 046 .090 015 1095
6.0 .900 064 266 014 260

Iload =2 ,dft =20 , T/t =1.0

) d/D M, N, My |  Ns

3.0 450 067 1049 025 118
35 612 053 047 020 116
4.0 800 039 075 018 157

Iload =2 ,d/t=30 ,T/t =05

X d/D M, N, M, Na

55 504 047 031 015 062
6.0 600 045 048 014 062
6.5 704 048 073 013 095
7.0 817 056 117 011 137

Hoad =2 ,d/t=30 ,T/t=10
X d/D M, N, M, Ny
40 533 052 034 019 105
45 675 019 042 017 103
5.0 833 035 1090 017 160
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Appendix A
Hoad =2 , dft =30 , T/t =20
A d/D M, N. My Ny
2.5 AY7 056 053 .044 251
3.0 .600 039 .049 .030 208
Iload =2 , dft =50 , T/t =05
A d/D M, N, My Ng
7.0 490 .043 024 012 054
7.5 .563 .043 034 011 Q061
8.0 640 045 046 011 .066
8.5 122 .050 .053 022 .057
Hoad =2 , dft =50 , T/t =10
A d/D M, Ny My Ny
5.0 .500 .046 .024 .016 095
5.5 .605 .039 031 014 086
6.0 720 034 046 .013 107
6.5 .845 .032 .058 010 144
Hload =2 |, dft = 50 s, Tft =20
A dajD M, N, My Ny
3.5 490 .038 034 024 202
4.0 .640 .029 034 018 181
4.5 .810 .019 073 017 204
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Appendix A
Iload =2 , dft =100 , T/t =1.0
A d/D M, N, My Ny
7.0 .490 037 .017 012 073
7.5 .563 .034 017 .012 .070
8.0 .640 .032 017 011 067
8.5 722 .035 .020 .031 073
Hload =2 |, dft =100 , T'ft =2.0
A d/D M, N, My Ny
5.0 -500 029 .020 .016 167
5.5 .605 .024 .031 .014 151
6.0 720 .019 052 013 166
6.5 .845 .013 082 010 245
Iload =2 , dft = 100 , T/t =5.0
A d/D M, N, My Ng
3.0 450 .013 024 046 454
3.5 612 .010 024 032 351
4.0 .800 007 049 021 283
Ioad =2 | dft = 200 , T/t =20
A d/D M, N, My N
7.0 490 023 018 .012 132
7.5 563 022 021 011 113
8.0 640 .020 023 011 .128
8.5 722 018 .023 019 120
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Appendix A
Iload =2, dft = 200 , Tft = 5.0
A d/D M. N, My Ng
4.5 006 .008 015 .020 316
5.0 625 006 032 016 271
5.5 756 .005 .070 .014 284
6.0 900 004 133 013 535
Iload =2, dft =200 , T/t = 10.
A d/D M, N, My No
3.0 450 004 .016 064 .549
3.5 612 003 .018 040 426
4.0 500 002 032 032 312
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Table A-3
Normalized stress resultants in the vessel due to an external circum-

ferential moment M¢ on the nozzle (maximum stress is along the
transverse axis).

Iload =3 ,dft =20 ,T/t=0.5

) D M, N, Ms No

4.5 506 218 089 067 076
5.0 625 203 .099 063 080
5.5 756 183 119 058 080
6.0 900 153 176 053 125

Iload =3 , dft =20 , T/t =1.0

A d/D M, Ny My Ny

3.0 450 197 120 075 061
3.5 .612 168 134 061 065
4.0 .800 124 163 042 075

Iload =3 , dft =30 , T/t =0.5

A d/D M, N, My N

5.5 .504 .206 073 063 .087
6.0 .600 .198 078 .061 077
6.5 104 188 086 .058 .065
7.0 817 177 115 055 .088

Iload =3 ,dj/t =30 , T/t =1.0

X d/D M, N, M, No

40 533 179 102 1065 063
45 675 152 114 054 070
5.0 833 116 153 040 114
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Appendix A
Iload =3 , dft =30 , T/t = 2.0
A d/D M, N, My Ny
2.5 417 124 134 105 142
3.0 .600 .103 149 072 138
Iload =3 ,d/t =50 , T/t =05
A d/D M, N, Mo Ny
7.0 490 198 .048 .060 .069
7.5 .063 186 053 057 .066
8.0 .640 179 .050 065 043
8.5 122 176 .059 .054 035
Iload =3 , dft =50 , T/t =10
A d/D M, N, Mo Neg
5.0 600 177 072 .062 069
5.5 605 161 080 .056 075
6.0 720 142 094 049 102
6.5 845 123 133 .043 161
Iload =3 , d/t =50 , T/t =20
X /D M, N, M; Ny
3.5 490 118 103 081 141
4.0 .640 100 115 061 129
4.5 810 073 136 036 128
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Appendix A
Iload =3 , d/t =100 , T/t =1.0
) /D M, N, M, Na
7.0 490 .169 .048 057 .091
7.5 .063 163 .051 055 .082
8.0 .640 160 056 053 071
8.5 722 .167 063 035 038
Jload =3 ,djt =100 , T/t =20
) /D i, N, M N
5.0 .500 116 .069 068 151
5.5 .605 104 075 057 129
6.0 720 .091 085 046 175
6.5 845 079 119 036 262
Tload =3 ,djt =100 , T/t =50
A d/D M, N, Mg Ny
3.0 .450 .031 072 135 428
3.5 612 .029 .091 .099 382
4.0 .800 027 125 072 .385
Tload =3 ,djt =200 , T/t =20
;) /D M, . My No
7.0 490 115 046 .059 176
7.5 563 115 050 088 203
8.0 .640 113 057 055 178
8.5 122 122 066 059 .058
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Appendix A
Iload =3 ,djt =200 , T/t =50
A d/D M, N. My Ny
4.5 506 032 .051 101 422
5.0 625 .030 059 084 313
5.5 756 .028 .064 059 163
6.0 .900 .026 085 .041 .158
Iload =3 , dft =200 , T/t =10.0
X /D 3, N, M; N
3.0 450 .007 047 142 540
3.5 612 007 064 121 489
4.0 .800 .008 077 102 568
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Table A-4
Normalized stress resultants in the vessel due to internal pressure p
(maximum stress is along the longitudinal axis}.

Tload =0 , dft =20 , T/t =0.5

3 /D M. N, Mo No
45 506 609 622 162 919
5.0 695 606 560 164 3.00
5.5 756 446 463 .119 1.72
Nload =0 ,dft =20 , T/t =10
X /D M, N, M, No
3.0 450 531 519 138 2.73
3.5 612 644 526 192 3.60
4.0 800 614 390 210 184
Tload =0 ,dft =30 , T/t =05
;) /D . . M, 7
55 504 674 586 180 2.46
6.0 1600 512 530 130 2.34
6.5 704 397 496 098 2.19
Iload =0 , dft =30 , T/t =1.0
X /D M, N, M, N,
2.0 533 714 497 509 5.86
45 675 15 430 224 2.41
5.0 833 467 258 140 172
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Appendix A
Iload =0 , djt =30 , T/t =20
A d/D M, N, My Ny
2.5 417 .295 359 131 3.67
3.0 .600 384 411 227 3.86
Iload =0 , dft =50 , T/t =1.0
A d/D M, N, M Ny
5.0 500 812 439 235 3.19
5.5 605 768 403 225 2.97
6.0 720 .609 333 173 2.59
Iload =0 , dft =50 , Tft =20
)Y d/D M, N, M, Ny
3.5 490 .449 381 218 4,28
4.0 640 521 389 .309 3.92
4.5 .810 342 228 222 2.72
Iload =0 , dft =100 , T/t =2.0
A d/D M, Ny My Ny
5.0 500 595 335 281 4.71
5.9 .605 548 298 267 4.28
6.0 120 .328 201 131 3.69
Hload =0 , dft =100 , T/t =5.0
A d/D M, N, My Ny
3.0 450 .089 137 .299 6.06
3.5 612 124 171 495 6.75
4.0 800 038 071 585 5.21
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Appendix A
Iload =0 , dft =200 , T/t =5.0
X d/D M, N, M, Ne
4.5 506 145 145 308 7.63
5.0 625 079 085 191 6.62
Iload =0 ,djt =200 , T/t =10.0
A d/D Mr Nr Jﬂ‘jﬂ Na
3.0 450 .014 033 466 6.58
3.5 612 .010 056 705 7.16
4.0 .800 -.024 281 958 5.72
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Table A-5
Normalized stress resultants in the vessel due to an axial force F, on
the vessel (maximum stress is along the transverse axis).

Hoad =5 , dft =20 , T/t =0.5

A d/D M. N, My Ny

4.5 -.006 435 895 127 2.62
5.0 625 580 1.08 .192 2.85
5.5 756 794 1.49 S0 3.10
6.0 900 1.07 2.38 506 3.72

INload =5 , dft =20 , T/t =1.0

A d/D M, N, My Ny

3.0 430 .297 .589 073 2.80
3.5 612 374 873 121 3.47
4.0 800 591 1.83 277 4.90

Iload =5 , dft =30 , T/t =05

A d/D M, N, My Np

59 .504 .595 .889 175 3.02
60 .600 753 1.04 .240 3.05
6.5 704 889 1.34 305 3.21
7.0 817 1.12 2.09 408 3.79

Iload =5 ,dft =30 ,T/t=10

X d/D M, N, M, No

40 533 437 693 123 3.49
45 675 581 1.05 199 417
5.0 833 804 2.10 360 5.42
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Iload =5 , dft =30 , Tft =20
A d/D M, N, My Ny
2.5 Al7 162 372 .033 3.17
3.0 .600 174 563 048 4.01
Iload =5 , dft =50 , T/t =05
A d/D M, N, M, N
7.0 490 853 75 258 3.10
7.5 563 1.07 .869 345 3.03
8.0 .640 118 1.03 .385 2.82
Iload =5 , dft =50 , T/t =1.0
A d{D M, N, Mo Ny
5.0 500 565 606 .159 3.86
5.5 605 701 792 222 4.17
6.0 720 .844 1.13 296 4.50
6.5 845 1.04 2.12 432 5.81
Hload =5 , d/t =50 , T/t =20
A d/D M, N, Mo, Ny
3.5 490 .228 .398 074 389
4.0 .640 271 617 .098 4 93
4.5 .810 .353 1.30 .166 6 87
Hoad =5 , dft =100 , T/t =1.0
A d/D M, N, M, Ny
7.0 .490 901 526 .283 3.76
7.5 .663 985 605 322 3.35
8.0 640 1.09 756 378 2.83
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Appendix A
Iload =5 , dft =100 , Tft =20
A d/D M, N, Mp Ny
5.0 .500 .356 381 133 4.76
5.5 605 433 527 183 5.49
6.0 .720 002 774 .249 6.17
6.5 845 616 1.51 402 7.96
Iload =5 , dft =100 , T/t =50
A d/D M, N, Mo Ny
3.0 450 .050 .164 .028 4.21
3.5 612 .054 .254 -.024 5.39
4.0 .800 .074 .624 -.178 8.36
Iload =5 , dft = 200 , T/t =20
}\ d/D Mr Nf‘ Afe Nﬂ
7.0 490 610 377 279 4.68
75 .563 .632 .455 .302 4.08
30 .640 651 608 343 3.13
Iload =5 , dj/t =200 , T/t =5.0
A d/D M, N, Mo Ny
4.5 .506 .078 172 070 564
5.0 .625 .096 277 .089 6 98
5.5 756 113 .506 .083 8.61
Hload =5 ,dft =200 , T/t = 10.0
A d/D M, N, Moy Ng
3.0 450 .013 .080 -.036 4.50
3.5 612 .015 138 -.149 5.86
4.0 .800 028 141 -.747 8.61
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